Amirizaniani commited on
Commit
f8b00dc
·
1 Parent(s): 383cecf

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +12 -9
app.py CHANGED
@@ -10,20 +10,23 @@ def generate_prompts(user_input):
10
  template=f"Just list 10 quetion prompts for {user_input} and don't put number before each of the prompts."
11
  )
12
  config = {'max_new_tokens': 2048, 'temperature': 0.7, 'context_length': 4096}
13
-
14
- model_name = "TheBloke/Mistral-7B-Instruct-v0.1-GGUF"
15
- model = AutoModelForCausalLM.from_pretrained(model_name)
16
- tokenizer = AutoTokenizer.from_pretrained(model_name)
17
-
18
- llm = CTransformers(model, tokenizer)
19
-
20
  hub_chain = LLMChain(prompt = prompt_template, llm = llm)
 
21
  input_data = {"Question": user_input}
22
-
23
- generated_prompts = hub_chain.run(input_data)
 
 
24
  questions_list = generated_prompts.split('\n')
 
 
25
  formatted_questions = "\n".join(f"Question: {question}" for i, question in enumerate(questions_list) if question.strip())
26
  questions_list = formatted_questions.split("Question:")[1:]
 
 
27
  return questions_list
28
 
29
  def answer_question(prompt):
 
10
  template=f"Just list 10 quetion prompts for {user_input} and don't put number before each of the prompts."
11
  )
12
  config = {'max_new_tokens': 2048, 'temperature': 0.7, 'context_length': 4096}
13
+ llm = CTransformers(model="https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.1-GGUF",
14
+ config=config,
15
+ threads=os.cpu_count())
 
 
 
 
16
  hub_chain = LLMChain(prompt = prompt_template, llm = llm)
17
+
18
  input_data = {"Question": user_input}
19
+
20
+ # Here you would integrate your prompt template with your model
21
+ # For demonstration, this is just a placeholder
22
+ generated_prompts = hub_chain.run(input_data) # Modify this part based on how you run the model
23
  questions_list = generated_prompts.split('\n')
24
+
25
+
26
  formatted_questions = "\n".join(f"Question: {question}" for i, question in enumerate(questions_list) if question.strip())
27
  questions_list = formatted_questions.split("Question:")[1:]
28
+
29
+
30
  return questions_list
31
 
32
  def answer_question(prompt):