File size: 3,833 Bytes
2c108cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import streamlit as st
import os
from langchain_huggingface import HuggingFaceEndpoint, ChatHuggingFace
from langchain_core.messages import HumanMessage, SystemMessage

# Set Hugging Face tokens
hf = os.getenv('Data_science')
os.environ['HUGGINGFACEHUB_API_TOKEN'] = hf
os.environ['HF_TOKEN'] = hf

# --- Page Configuration ---
st.set_page_config(page_title="πŸ€– ML Mentor Chat", page_icon="πŸ“˜", layout="centered")

# --- Inject Custom CSS Styling ---
st.markdown("""
    <style>
    .main {
        background: linear-gradient(135deg, #1e3c72 0%, #2a5298 100%);
        padding: 2rem;
        font-family: 'Segoe UI', sans-serif;
    }
    h1, h2, h3, h4, h5, h6, p, label, .css-10trblm, .css-1v0mbdj, .css-q8sbsg {
        color: #ffffff !important;
        text-align: center;
    }
    .stTextInput > div > div > input {
        background-color: rgba(255, 255, 255, 0.1);
        color: white;
        border: 1px solid rgba(255, 255, 255, 0.5);
        border-radius: 8px;
        padding: 0.5em;
    }
    .stTextInput > div > div > input::placeholder {
        color: rgba(255, 255, 255, 0.6);
    }
    .stButton>button {
        background: rgba(255, 255, 255, 0.15);
        border: 2px solid rgba(255, 255, 255, 0.4);
        color: white;
        font-size: 18px;
        font-weight: bold;
        padding: 0.8em 1.2em;
        border-radius: 10px;
        width: 100%;
        transition: 0.3s ease;
        box-shadow: 0 4px 12px rgba(0, 0, 0, 0.25);
    }
    .stButton>button:hover {
        background: rgba(255, 255, 255, 0.3);
        border-color: white;
        color: white;
    }
    .stSidebar > div:first-child {
        background: #2c3e50;
        padding: 1rem;
        border-radius: 0 15px 15px 0;
    }
    .stSidebar h1, .stSidebar h2, .stSidebar h3, .stSidebar label, .stSidebar p {
        color: white !important;
    }
    hr {
        border: 1px solid rgba(255, 255, 255, 0.3);
        margin: 2em 0;
    }
    </style>
""", unsafe_allow_html=True)

# --- Page Title ---
st.title("πŸ€– Machine Learning Mentor Chat")
st.markdown("### πŸ“˜ Ask anything about ML concepts, tools, or workflows!")

# --- Sidebar: Experience Selector ---
st.sidebar.title("πŸ§‘β€πŸ« Mentor Preferences")
experience_label = st.sidebar.selectbox(
    "πŸŽ“ Choose your experience level:", ["Beginner", "Intermediate", "Experienced"]
)

# --- Initialize Chat Model ---
ml_model_skeleton = HuggingFaceEndpoint(
    repo_id='Qwen/Qwen3-14B',
    provider='nebius',
    temperature=0.7,
    max_new_tokens=50,
    task='conversational'
)

ml_mentor = ChatHuggingFace(
    llm=ml_model_skeleton,
    repo_id='Qwen/Qwen3-14B',
    provider='nebius',
    temperature=0.7,
    max_new_tokens=50,
    task='conversational'
)

PAGE_KEY = "ml_chat_history"

# --- Session State Initialization ---
if PAGE_KEY not in st.session_state:
    st.session_state[PAGE_KEY] = []

# --- Chat Input Form ---
with st.form(key="chat_form"):
    user_input = st.text_input("🧠 Ask your ML question:", placeholder="e.g. What is overfitting?")
    submit = st.form_submit_button("πŸš€ Send")

# --- Chat Logic ---
if submit and user_input:
    system_prompt = (
        f"You are a helpful machine learning mentor for a {experience_label.lower()} learner. "
        f"Only answer machine learning-related questions in a concise, friendly tone. "
        f"Keep answers under 150 words. Politely decline off-topic questions."
    )
    messages = [SystemMessage(content=system_prompt), HumanMessage(content=user_input)]
    result = ml_mentor.invoke(messages)
    st.session_state[PAGE_KEY].append((user_input, result.content))

# --- Chat History ---
st.subheader("πŸ“œ Chat History")
for user, bot in st.session_state[PAGE_KEY]:
    st.markdown(f"**πŸ§‘ You:** {user}")
    st.markdown(f"**πŸ€– Mentor:** {bot}")
    st.markdown("---")