Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,100 @@
|
|
1 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
|
4 |
-
st.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
+
import torch
|
3 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
4 |
+
from PIL import Image
|
5 |
+
import requests
|
6 |
+
from io import BytesIO
|
7 |
|
8 |
+
|
9 |
+
@st.cache_data
|
10 |
+
def load_header_image():
|
11 |
+
response = requests.get(
|
12 |
+
"https://upload.wikimedia.org/wikipedia/commons/thumb/b/bc/ArXiv_logo_2022.svg/512px-ArXiv_logo_2022.svg.png"
|
13 |
+
)
|
14 |
+
return Image.open(BytesIO(response.content))
|
15 |
+
|
16 |
+
|
17 |
+
@st.cache_resource
|
18 |
+
def load_model():
|
19 |
+
checkpoint = torch.load('TinyBERT_cls_model.pt', map_location='cpu')
|
20 |
+
|
21 |
+
model = AutoModelForSequenceClassification.from_pretrained(
|
22 |
+
"huawei-noah/TinyBERT_General_4L_312D",
|
23 |
+
num_labels=len(checkpoint['idx_to_category'])
|
24 |
+
)
|
25 |
+
model.load_state_dict(checkpoint['model_state_dict'])
|
26 |
+
|
27 |
+
tokenizer = checkpoint['tokenizer']
|
28 |
+
idx_to_category = checkpoint['idx_to_category']
|
29 |
+
|
30 |
+
return model, tokenizer, idx_to_category
|
31 |
+
|
32 |
+
def predict(title, abstract, model, tokenizer, idx_to_category, threshold=0.95):
|
33 |
+
text = f"{title} /n {abstract}" if abstract else title
|
34 |
+
inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=512)
|
35 |
+
|
36 |
+
with torch.no_grad():
|
37 |
+
outputs = model(**inputs)
|
38 |
+
|
39 |
+
probs = torch.nn.functional.softmax(outputs.logits, dim=-1)[0]
|
40 |
+
sorted_probs, sorted_indices = torch.sort(probs, descending=True)
|
41 |
+
|
42 |
+
results = []
|
43 |
+
cumulative_prob = 0.0
|
44 |
+
|
45 |
+
for i in range(len(sorted_probs)):
|
46 |
+
if cumulative_prob >= threshold:
|
47 |
+
break
|
48 |
+
prob = sorted_probs[i].item()
|
49 |
+
results.append({
|
50 |
+
"category": idx_to_category[sorted_indices[i].item()],
|
51 |
+
"probability": prob
|
52 |
+
})
|
53 |
+
cumulative_prob += prob
|
54 |
+
|
55 |
+
return results, cumulative_prob
|
56 |
+
|
57 |
+
|
58 |
+
def main():
|
59 |
+
model, tokenizer, idx_to_category = load_model()
|
60 |
+
header_img = load_header_image()
|
61 |
+
|
62 |
+
st.set_page_config(page_title="arXiv Classifier", layout="wide")
|
63 |
+
|
64 |
+
col1, col2 = st.columns([1, 4])
|
65 |
+
with col1:
|
66 |
+
st.image(header_img, width=100)
|
67 |
+
with col2:
|
68 |
+
st.title("arXiv Article Classifier")
|
69 |
+
st.markdown("Определение тематики научных статей по названию и аннотации")
|
70 |
+
|
71 |
+
with st.form("input_form"):
|
72 |
+
title = st.text_input("Название статьи*", placeholder="Введите название...")
|
73 |
+
abstract = st.text_area("Аннотация", placeholder="Введите текст аннотации (необязательно)...", height=150)
|
74 |
+
submitted = st.form_submit_button("Классифицировать")
|
75 |
+
|
76 |
+
if submitted and not title:
|
77 |
+
st.error("Пожалуйста, введите название статьи")
|
78 |
+
|
79 |
+
if submitted and title:
|
80 |
+
with st.spinner("Анализируем статью..."):
|
81 |
+
results, total_prob = predict(
|
82 |
+
title=title,
|
83 |
+
abstract=abstract,
|
84 |
+
model=model,
|
85 |
+
tokenizer=tokenizer,
|
86 |
+
idx_to_category=idx_to_category
|
87 |
+
)
|
88 |
+
|
89 |
+
st.success("Результаты классификации:")
|
90 |
+
st.metric("Общая вероятность", f"{total_prob*100:.1f}%")
|
91 |
+
for i, res in enumerate(results, 1):
|
92 |
+
col1, col2 = st.columns([1, 4])
|
93 |
+
with col1:
|
94 |
+
st.metric(f"Топ {i}", f"{res['probability']*100:.1f}%")
|
95 |
+
with col2:
|
96 |
+
st.progress(res['probability'], text=res['category'])
|
97 |
+
|
98 |
+
|
99 |
+
if __name__ == "__main__":
|
100 |
+
main()
|