Spaces:
Sleeping
Sleeping
Fix: Add fn and outputs to gr.Examples to resolve ValueError
Browse files
app.py
CHANGED
@@ -1,438 +1,144 @@
|
|
1 |
import gradio as gr
|
2 |
import os
|
3 |
-
import
|
4 |
-
import
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
youtube_regex = (
|
16 |
-
r'(?:youtube(?:-nocookie)?\.com/(?:[^/\n\s]+/|watch(?:/|\?(?:[^&\n\s]+&)*v=)|embed(?:/|\?(?:[^&\n\s]+&)*feature=oembed)|shorts/|live/)|youtu\.be/)'
|
17 |
-
r'([a-zA-Z0-9_-]{11})' # This captures the 11-character video ID
|
18 |
-
)
|
19 |
-
# We use re.search because the video ID might not be at the start of the query string part of the URL.
|
20 |
-
# re.match only matches at the beginning of the string (or beginning of line in multiline mode).
|
21 |
-
# The regex now directly looks for the 'v=VIDEO_ID' or youtu.be/VIDEO_ID structure.
|
22 |
-
# The first part of the regex matches the domain and common paths, the second part captures the ID.
|
23 |
-
return bool(re.search(youtube_regex, url_string))
|
24 |
-
|
25 |
-
def download_video(url_string: str, temp_dir: str) -> str | None:
|
26 |
-
"""Downloads video from a URL (YouTube or direct link) to a temporary directory."""
|
27 |
-
if is_youtube_url(url_string):
|
28 |
-
print(f"Attempting to download YouTube video: {url_string}")
|
29 |
-
# Define a fixed output filename pattern within the temp_dir
|
30 |
-
output_filename_template = "downloaded_video.%(ext)s" # yt-dlp replaces %(ext)s
|
31 |
-
output_path_template = os.path.join(temp_dir, output_filename_template)
|
32 |
-
|
33 |
-
cmd = [
|
34 |
-
"yt-dlp",
|
35 |
-
"-f", "bestvideo[ext=mp4]+bestaudio[ext=m4a]/mp4/best", # Prefer mp4 format
|
36 |
-
"--output", output_path_template,
|
37 |
-
url_string
|
38 |
-
]
|
39 |
-
print(f"Executing yt-dlp command: {' '.join(cmd)}")
|
40 |
-
|
41 |
-
try:
|
42 |
-
result = subprocess.run(cmd, capture_output=True, text=True, timeout=300, check=False)
|
43 |
-
|
44 |
-
print(f"yt-dlp STDOUT:\n{result.stdout}")
|
45 |
-
print(f"yt-dlp STDERR:\n{result.stderr}")
|
46 |
-
|
47 |
-
if result.returncode == 0:
|
48 |
-
# Find the actual downloaded file based on the template
|
49 |
-
downloaded_file_path = None
|
50 |
-
for item in os.listdir(temp_dir):
|
51 |
-
if item.startswith("downloaded_video."):
|
52 |
-
potential_path = os.path.join(temp_dir, item)
|
53 |
-
if os.path.isfile(potential_path):
|
54 |
-
downloaded_file_path = potential_path
|
55 |
-
print(f"YouTube video successfully downloaded to: {downloaded_file_path}")
|
56 |
-
break
|
57 |
-
if downloaded_file_path:
|
58 |
-
return downloaded_file_path
|
59 |
-
else:
|
60 |
-
print(f"yt-dlp seemed to succeed (exit code 0) but the output file 'downloaded_video.*' was not found in {temp_dir}.")
|
61 |
-
return None
|
62 |
-
else:
|
63 |
-
print(f"yt-dlp failed with return code {result.returncode}.")
|
64 |
-
return None
|
65 |
-
except subprocess.TimeoutExpired:
|
66 |
-
print(f"yt-dlp command timed out after 300 seconds for URL: {url_string}")
|
67 |
-
return None
|
68 |
-
except Exception as e:
|
69 |
-
print(f"An unexpected error occurred during yt-dlp execution for {url_string}: {e}")
|
70 |
-
return None
|
71 |
-
|
72 |
-
elif url_string.startswith(('http://', 'https://')) and url_string.lower().endswith(('.mp4', '.mov', '.avi', '.mkv', '.webm')):
|
73 |
-
print(f"Attempting to download direct video link: {url_string}")
|
74 |
-
try:
|
75 |
-
response = requests.get(url_string, stream=True, timeout=300) # 5 min timeout
|
76 |
-
response.raise_for_status() # Raises HTTPError for bad responses (4XX or 5XX)
|
77 |
-
|
78 |
-
filename = os.path.basename(url_string) or "downloaded_video_direct.mp4"
|
79 |
-
video_file_path = os.path.join(temp_dir, filename)
|
80 |
-
|
81 |
-
with open(video_file_path, 'wb') as f:
|
82 |
-
for chunk in response.iter_content(chunk_size=8192):
|
83 |
-
f.write(chunk)
|
84 |
-
print(f"Direct video downloaded successfully to: {video_file_path}")
|
85 |
-
return video_file_path
|
86 |
-
except requests.exceptions.RequestException as e:
|
87 |
-
print(f"Error downloading direct video link {url_string}: {e}")
|
88 |
-
return None
|
89 |
-
except Exception as e:
|
90 |
-
print(f"An unexpected error occurred during direct video download for {url_string}: {e}")
|
91 |
-
return None
|
92 |
-
else:
|
93 |
-
print(f"Input '{url_string}' is not a recognized YouTube URL or direct video link for download.")
|
94 |
-
return None
|
95 |
-
|
96 |
-
|
97 |
-
def process_video_input(input_string: str) -> Dict[str, Any]:
|
98 |
-
"""
|
99 |
-
Processes the video (from URL or local file path) and returns its transcription status as a JSON object.
|
100 |
-
"""
|
101 |
-
if not input_string:
|
102 |
-
return {
|
103 |
-
"status": "error",
|
104 |
-
"error_details": {
|
105 |
-
"message": "No video URL or file path provided.",
|
106 |
-
"input_received": input_string
|
107 |
-
}
|
108 |
-
}
|
109 |
-
|
110 |
-
video_path_to_process = None
|
111 |
-
# Get base_modal_url and construct modal_endpoint_url
|
112 |
-
base_modal_url = os.getenv("MODAL_APP_BASE_URL")
|
113 |
-
if not base_modal_url:
|
114 |
-
print("ERROR: MODAL_APP_BASE_URL environment variable not set.")
|
115 |
-
return {
|
116 |
-
"status": "error",
|
117 |
-
"error_details": {
|
118 |
-
"message": "Modal application base URL is not configured. Please set the MODAL_APP_BASE_URL environment variable.",
|
119 |
-
"input_received": input_string
|
120 |
-
}
|
121 |
-
}
|
122 |
-
modal_endpoint_url = f"{base_modal_url.rstrip('/')}/analyze_video"
|
123 |
-
print(f"Target Modal endpoint: {modal_endpoint_url}")
|
124 |
-
|
125 |
-
response_json = None # Initialize to ensure it's always defined before return
|
126 |
-
|
127 |
-
try:
|
128 |
-
if input_string.startswith(('http://', 'https://')):
|
129 |
-
print(f"Input is a URL: {input_string}. Sending URL to Modal endpoint as JSON.")
|
130 |
-
payload = {"video_url": input_string}
|
131 |
-
headers = {'Content-Type': 'application/json'}
|
132 |
-
response = requests.post(modal_endpoint_url, json=payload, headers=headers, timeout=1860)
|
133 |
-
|
134 |
-
elif os.path.exists(input_string):
|
135 |
-
print(f"Input is a local file path: {input_string}. Sending file content to Modal endpoint.")
|
136 |
-
video_path_to_process = input_string # Use input_string as the path
|
137 |
-
try:
|
138 |
-
with open(video_path_to_process, "rb") as video_file:
|
139 |
-
video_bytes_content = video_file.read()
|
140 |
-
print(f"Read {len(video_bytes_content)} bytes from video file '{video_path_to_process}'.")
|
141 |
-
files = {'video_file': (os.path.basename(video_path_to_process), video_bytes_content, 'video/mp4')}
|
142 |
-
response = requests.post(modal_endpoint_url, files=files, timeout=1860)
|
143 |
-
except FileNotFoundError: # Catch if file disappears just before open
|
144 |
-
print(f"Error: Video file not found at {video_path_to_process} when trying to read for upload.")
|
145 |
-
return { # Return immediately
|
146 |
-
"status": "error",
|
147 |
-
"error_details": {
|
148 |
-
"message": "Video file disappeared before it could be read for upload.",
|
149 |
-
"path_attempted": video_path_to_process
|
150 |
-
}
|
151 |
-
}
|
152 |
-
else:
|
153 |
-
# This handles cases where input_string is neither a URL nor an existing file path
|
154 |
-
print(f"Input '{input_string}' is not a valid URL or an existing file path.")
|
155 |
-
return { # Return immediately
|
156 |
-
"status": "error",
|
157 |
-
"error_details": {
|
158 |
-
"message": f"Input '{input_string}' is not a valid URL or an existing file path.",
|
159 |
-
"input_received": input_string
|
160 |
-
}
|
161 |
-
}
|
162 |
-
|
163 |
-
# Common response handling
|
164 |
-
response.raise_for_status() # Raise an exception for HTTP errors (4xx or 5xx)
|
165 |
-
analysis_results = response.json()
|
166 |
-
print(f"Received results from Modal endpoint: {str(analysis_results)[:200]}...")
|
167 |
-
response_json = {
|
168 |
-
"status": "success",
|
169 |
-
"data": analysis_results
|
170 |
-
}
|
171 |
-
|
172 |
-
except requests.exceptions.Timeout:
|
173 |
-
print(f"Request to Modal endpoint {modal_endpoint_url} timed out.")
|
174 |
-
response_json = {
|
175 |
-
"status": "error",
|
176 |
-
"error_details": {
|
177 |
-
"message": "Request to video analysis service timed out.",
|
178 |
-
"endpoint_url": modal_endpoint_url
|
179 |
-
}
|
180 |
-
}
|
181 |
-
except requests.exceptions.HTTPError as e:
|
182 |
-
print(f"HTTP error calling Modal endpoint {modal_endpoint_url}: {e.response.status_code} - {e.response.text}")
|
183 |
-
response_json = {
|
184 |
-
"status": "error",
|
185 |
-
"error_details": {
|
186 |
-
"message": f"Video analysis service returned an error: {e.response.status_code}",
|
187 |
-
"details": e.response.text,
|
188 |
-
"endpoint_url": modal_endpoint_url
|
189 |
-
}
|
190 |
-
}
|
191 |
-
except requests.exceptions.RequestException as e: # General request exception
|
192 |
-
print(f"Error calling Modal endpoint {modal_endpoint_url}: {e}") # Corrected MODAL_ENDPOINT_URL to modal_endpoint_url
|
193 |
-
response_json = {
|
194 |
-
"status": "error",
|
195 |
-
"error_details": {
|
196 |
-
"message": "Failed to connect to video analysis service.",
|
197 |
-
"details": str(e),
|
198 |
-
"endpoint_url": modal_endpoint_url # Corrected MODAL_ENDPOINT_URL to modal_endpoint_url
|
199 |
-
}
|
200 |
-
}
|
201 |
-
except Exception as e: # Catch-all for other unexpected errors
|
202 |
-
print(f"An unexpected error occurred in process_video_input: {e}")
|
203 |
-
import traceback
|
204 |
-
traceback.print_exc()
|
205 |
-
response_json = {
|
206 |
-
"status": "error",
|
207 |
-
"error_details": {
|
208 |
-
"message": f"An unexpected error occurred: {str(e)}",
|
209 |
-
"exception_type": type(e).__name__
|
210 |
-
}
|
211 |
-
}
|
212 |
|
213 |
-
|
214 |
-
|
215 |
-
def process_video_input_new(input_string: str) -> Dict[str, Any]:
|
216 |
-
"""
|
217 |
-
Processes the video (from URL or local file path) and returns its transcription status as a JSON object.
|
218 |
-
"""
|
219 |
-
if not input_string:
|
220 |
-
return {
|
221 |
-
"status": "error",
|
222 |
-
"error_details": {
|
223 |
-
"message": "No video URL or file path provided.",
|
224 |
-
"input_received": input_string
|
225 |
-
}
|
226 |
-
}
|
227 |
-
|
228 |
-
video_path_to_process = None
|
229 |
-
# Get base_modal_url and construct modal_endpoint_url
|
230 |
-
base_modal_url = os.getenv("MODAL_APP_BASE_URL")
|
231 |
-
if not base_modal_url:
|
232 |
-
print("ERROR: MODAL_APP_BASE_URL environment variable not set.")
|
233 |
-
return {
|
234 |
-
"status": "error",
|
235 |
-
"error_details": {
|
236 |
-
"message": "Modal application base URL is not configured. Please set the MODAL_APP_BASE_URL environment variable.",
|
237 |
-
"input_received": input_string
|
238 |
-
}
|
239 |
-
}
|
240 |
-
modal_endpoint_url = base_modal_url.rstrip('/')
|
241 |
-
print(f"Using Modal endpoint URL: {modal_endpoint_url}")
|
242 |
-
|
243 |
try:
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
# Local file path - still need to send as JSON for now (until we support file uploads)
|
251 |
-
return {"status": "error", "error_details": {"message": "Local file upload not yet supported. Please provide a video URL."}}
|
252 |
-
|
253 |
-
response.raise_for_status()
|
254 |
-
result = response.json()
|
255 |
-
print(f"Modal backend response: {result}")
|
256 |
-
return result
|
257 |
-
|
258 |
-
except requests.exceptions.HTTPError as e:
|
259 |
-
error_msg = f"HTTP {e.response.status_code}: {e.response.text[:200] if e.response else 'Unknown error'}"
|
260 |
-
print(f"HTTP error: {error_msg}")
|
261 |
-
return {"status": "error", "error_details": {"message": f"Video analysis service returned an error: {e.response.status_code}", "details": error_msg, "endpoint_url": modal_endpoint_url}}
|
262 |
-
except requests.exceptions.RequestException as e:
|
263 |
-
print(f"Request error: {e}")
|
264 |
-
return {"status": "error", "error_details": {"message": "Failed to connect to video analysis service", "details": str(e), "endpoint_url": modal_endpoint_url}}
|
265 |
except Exception as e:
|
266 |
-
|
267 |
-
return {"status": "error", "error_details": {"message": "Unexpected error during video analysis", "details": str(e), "endpoint_url": modal_endpoint_url}}
|
268 |
-
|
269 |
-
# Gradio Interface for the API endpoint
|
270 |
-
api_interface = gr.Interface(
|
271 |
-
fn=process_video_input_new,
|
272 |
-
inputs=gr.Textbox(lines=1, label="Video URL or Local File Path for Interpretation",
|
273 |
-
placeholder="Enter YouTube URL, direct video URL (.mp4, .mov, etc.), or local file path..."),
|
274 |
-
outputs=gr.JSON(label="API Response"),
|
275 |
-
title="Video Interpretation Input",
|
276 |
-
description="Provide a video URL or local file path to get its interpretation status as JSON.",
|
277 |
-
flagging_options=None,
|
278 |
-
examples=[
|
279 |
-
["https://www.youtube.com/watch?v=dQw4w9WgXcQ"],
|
280 |
-
["https://commondatastorage.googleapis.com/gtv-videos-bucket/sample/BigBuckBunny.mp4"]
|
281 |
-
]
|
282 |
-
)
|
283 |
|
284 |
-
|
285 |
-
|
286 |
-
"""
|
287 |
-
|
288 |
-
|
289 |
-
"""
|
290 |
-
result = process_video_input(input_string)
|
291 |
-
status_str = result.get("status", "Unknown Status")
|
292 |
|
293 |
-
|
294 |
-
|
295 |
-
if status_str == "success" and "data" in result:
|
296 |
-
details_json = result["data"]
|
297 |
-
elif "error_details" in result:
|
298 |
-
details_json = result["error_details"]
|
299 |
-
else: # Fallback, show the whole result
|
300 |
-
details_json = result
|
301 |
-
|
302 |
-
return status_str, details_json
|
303 |
-
|
304 |
-
|
305 |
-
def call_topic_analysis_endpoint(topic_str: str, max_vids: int) -> Dict[str, Any]:
|
306 |
-
"""Calls the Modal FastAPI endpoint for topic-based video analysis."""
|
307 |
-
if not topic_str:
|
308 |
-
return {"status": "error", "error_details": {"message": "Topic cannot be empty."}}
|
309 |
-
if not (1 <= max_vids <= 10): # Max 10 as defined in FastAPI endpoint, can adjust
|
310 |
-
return {"status": "error", "error_details": {"message": "Max videos must be between 1 and 10."}}
|
311 |
-
|
312 |
-
base_modal_url = os.getenv("MODAL_APP_BASE_URL")
|
313 |
-
if not base_modal_url:
|
314 |
-
print("ERROR: MODAL_APP_BASE_URL environment variable not set.")
|
315 |
-
return {
|
316 |
-
"status": "error",
|
317 |
-
"error_details": {
|
318 |
-
"message": "Modal application base URL is not configured. Please set the MODAL_APP_BASE_URL environment variable."
|
319 |
-
}
|
320 |
-
}
|
321 |
-
topic_endpoint_url = f"{base_modal_url.rstrip('/')}/analyze_topic"
|
322 |
-
|
323 |
-
params = {"topic": topic_str, "max_videos": max_vids}
|
324 |
-
print(f"Calling Topic Analysis endpoint: {topic_endpoint_url} with params: {params}")
|
325 |
-
|
326 |
try:
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
return
|
333 |
-
except requests.exceptions.Timeout:
|
334 |
-
print(f"Request to Topic Analysis endpoint {topic_endpoint_url} timed out.")
|
335 |
-
return {"status": "error", "error_details": {"message": "Request to topic analysis service timed out."}}
|
336 |
-
except requests.exceptions.HTTPError as e:
|
337 |
-
print(f"HTTP error calling Topic Analysis endpoint {topic_endpoint_url}: {e.response.status_code} - {e.response.text}")
|
338 |
-
return {"status": "error", "error_details": {"message": f"Topic analysis service returned an error: {e.response.status_code}", "details": e.response.text}}
|
339 |
-
except requests.exceptions.RequestException as e:
|
340 |
-
print(f"Error calling Topic Analysis endpoint {topic_endpoint_url}: {e}")
|
341 |
-
return {"status": "error", "error_details": {"message": "Failed to connect to topic analysis service.", "details": str(e)}}
|
342 |
except Exception as e:
|
343 |
-
|
344 |
-
return {"status": "error", "error_details": {"message": "An unexpected error occurred during topic analysis call.", "details": str(e)}}
|
345 |
|
346 |
-
|
347 |
-
fn=demo_process_video,
|
348 |
-
inputs=gr.Textbox(lines=1, label="Video URL or Local File Path", placeholder="Enter YouTube URL, direct video URL, or local file path...", scale=3),
|
349 |
-
outputs=[gr.Textbox(label="Status"), gr.JSON(label="Comprehensive Analysis Output", scale=2)],
|
350 |
-
title="Video Interpretation Demo",
|
351 |
-
description="Provide a video URL or local file path to see its transcription status.",
|
352 |
-
flagging_options=None
|
353 |
-
)
|
354 |
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
|
364 |
-
if (linkText === 'Use via API' || linkText === 'Share via Link') { // Target both possible texts
|
365 |
-
links[i].textContent = 'Use as an MCP or via API';
|
366 |
-
console.log('[MCP Script] Successfully changed link text from: ' + linkText);
|
367 |
-
foundAndChangedGlobal = true;
|
368 |
-
return true; // Indicate success
|
369 |
-
}
|
370 |
-
}
|
371 |
-
return false; // Indicate not found/changed in this attempt
|
372 |
-
}
|
373 |
|
374 |
-
|
375 |
-
|
376 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
377 |
|
378 |
-
|
379 |
-
|
380 |
-
|
381 |
-
initialScanDone = true;
|
382 |
-
}
|
383 |
|
384 |
-
|
385 |
-
|
386 |
-
if (attempts >= maxAttempts && !foundAndChangedGlobal) {
|
387 |
-
console.log('[MCP Script] Max attempts reached. Target link was not found or changed. It might not be rendered or has a different initial text.');
|
388 |
-
}
|
389 |
-
}
|
390 |
-
attempts++;
|
391 |
-
}, 100);
|
392 |
-
"""
|
393 |
|
394 |
-
|
395 |
-
|
396 |
-
|
397 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
398 |
|
399 |
-
|
400 |
-
gr.Markdown("### Use this endpoint from another application (e.g., another Hugging Face Space).")
|
401 |
-
gr.Markdown("The `process_video_input` function (for video interpretation) is exposed here.")
|
402 |
-
api_interface.render()
|
403 |
-
gr.Markdown("**Note:** Some YouTube videos may fail to download if they require login or cookie authentication due to YouTube's restrictions. Direct video links are generally more reliable for automated processing.")
|
404 |
|
405 |
-
|
406 |
-
|
407 |
-
|
408 |
-
|
409 |
-
|
410 |
-
|
411 |
-
with gr.
|
412 |
-
|
413 |
-
|
414 |
-
|
415 |
-
|
416 |
-
def handle_submit(input_text):
|
417 |
-
if not input_text.strip():
|
418 |
-
return "Please enter a video URL or file path."
|
419 |
-
return process_video_input_new(input_text.strip())
|
420 |
-
|
421 |
-
def handle_clear():
|
422 |
-
return "", ""
|
423 |
|
424 |
-
|
425 |
-
|
426 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
427 |
|
428 |
-
|
|
|
|
|
|
|
|
|
|
|
429 |
gr.Examples(
|
430 |
-
examples=[
|
431 |
-
|
432 |
-
|
433 |
-
]
|
434 |
-
inputs=input_text
|
435 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
436 |
gr.Markdown("**Processing can take several minutes** depending on video length and model inference times. The cache on the Modal backend will speed up repeated requests for the same video.")
|
437 |
|
438 |
with gr.Tab("Demo (for Manual Testing)"):
|
|
|
1 |
import gradio as gr
|
2 |
import os
|
3 |
+
import httpx
|
4 |
+
from typing import Dict, Any
|
5 |
+
|
6 |
+
# --- Backend Client Functions ---
|
7 |
+
# These functions call the Modal/backend endpoints.
|
8 |
+
|
9 |
+
async def call_video_analysis_backend(video_url: str) -> Dict[str, Any]:
|
10 |
+
"""Calls the backend to analyze a single video."""
|
11 |
+
# Default to a placeholder if the env var is not set, to avoid crashing.
|
12 |
+
backend_url = os.getenv("BACKEND_VIDEO_URL", "https://your-backend-hf-space-for-video/process_video_analysis")
|
13 |
+
if not video_url:
|
14 |
+
return {"status": "error", "message": "Video URL cannot be empty."}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
+
print(f"Sending request to backend for video: {video_url}")
|
17 |
+
payload = {"video_url": video_url}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
try:
|
19 |
+
async with httpx.AsyncClient(timeout=1800.0) as client:
|
20 |
+
response = await client.post(backend_url, json=payload)
|
21 |
+
response.raise_for_status()
|
22 |
+
return response.json()
|
23 |
+
except httpx.HTTPStatusError as e:
|
24 |
+
return {"status": "error", "message": f"Backend Error: {e.response.status_code}", "details": e.response.text}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
except Exception as e:
|
26 |
+
return {"status": "error", "message": "Failed to connect to backend", "details": str(e)}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
+
async def call_topic_analysis_backend(topic: str, max_videos: int) -> Dict[str, Any]:
|
29 |
+
"""Calls the backend to analyze videos for a topic."""
|
30 |
+
backend_url = os.getenv("BACKEND_TOPIC_URL", "https://your-backend-hf-space-for-topic/analyze_topic")
|
31 |
+
if not topic:
|
32 |
+
return {"status": "error", "message": "Topic cannot be empty."}
|
|
|
|
|
|
|
33 |
|
34 |
+
print(f"Sending request to backend for topic: {topic} ({max_videos} videos)")
|
35 |
+
payload = {"topic": topic, "max_videos": max_videos}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
try:
|
37 |
+
async with httpx.AsyncClient(timeout=3600.0) as client:
|
38 |
+
response = await client.post(backend_url, json=payload)
|
39 |
+
response.raise_for_status()
|
40 |
+
return response.json()
|
41 |
+
except httpx.HTTPStatusError as e:
|
42 |
+
return {"status": "error", "message": f"Backend Error: {e.response.status_code}", "details": e.response.text}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
except Exception as e:
|
44 |
+
return {"status": "error", "message": "Failed to connect to backend", "details": str(e)}
|
|
|
45 |
|
46 |
+
# --- Gradio Tool Functions (Wrappers for MCP) ---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
+
async def analyze_video(video_url: str):
|
49 |
+
"""
|
50 |
+
Triggers a comprehensive analysis of a single video from a URL.
|
51 |
|
52 |
+
This tool calls a backend service to perform multiple analyses:
|
53 |
+
- Transcribes audio to text.
|
54 |
+
- Generates a descriptive caption for the video content.
|
55 |
+
- Recognizes main actions in the video.
|
56 |
+
- Detects objects in keyframes.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
+
:param video_url: The public URL of the video to be processed (e.g., a YouTube link).
|
59 |
+
:return: A JSON object containing the full analysis results from the backend.
|
60 |
+
"""
|
61 |
+
status_update = f"Analyzing video: {video_url}..."
|
62 |
+
results = await call_video_analysis_backend(video_url)
|
63 |
+
if isinstance(results, dict) and results.get("analysis") is None:
|
64 |
+
status_update = f"Error analyzing video: {results.get('error', 'Unknown error')}"
|
65 |
+
else:
|
66 |
+
status_update = "Video analysis complete."
|
67 |
+
return status_update, results
|
68 |
|
69 |
+
async def analyze_topic(topic: str, max_videos: int):
|
70 |
+
"""
|
71 |
+
Finds and analyzes multiple videos based on a given topic.
|
|
|
|
|
72 |
|
73 |
+
This tool calls a backend service that searches for videos related to the topic,
|
74 |
+
then runs a comprehensive analysis on each video found.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
|
76 |
+
:param topic: The topic to search for (e.g., 'latest AI advancements').
|
77 |
+
:param max_videos: The maximum number of videos to find and analyze (1-5).
|
78 |
+
:return: A JSON object with the aggregated analysis results for all videos.
|
79 |
+
"""
|
80 |
+
status_update = f"Analyzing topic '{topic}' with {max_videos} videos... this can take a very long time."
|
81 |
+
results = await call_topic_analysis_backend(topic, max_videos)
|
82 |
+
if isinstance(results, dict) and results.get("results") is None:
|
83 |
+
status_update = f"Error analyzing topic: {results.get('error', 'Unknown error')}"
|
84 |
+
else:
|
85 |
+
status_update = "Topic analysis complete."
|
86 |
+
return status_update, results
|
87 |
|
88 |
+
# --- Gradio UI ---
|
|
|
|
|
|
|
|
|
89 |
|
90 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
91 |
+
gr.Markdown("# LLM Video Interpretation MCP")
|
92 |
+
gr.Markdown("This Hugging Face Space provides tools for processing video context for AI agents. Use the tools below to analyze videos by URL or by topic.")
|
93 |
+
|
94 |
+
with gr.Tab("Single Video Analysis"):
|
95 |
+
gr.Markdown("## Analyze a single video from a URL")
|
96 |
+
with gr.Row():
|
97 |
+
video_url_input = gr.Textbox(label="Video URL", placeholder="Enter a YouTube or direct video URL...", scale=4)
|
98 |
+
submit_button = gr.Button("Analyze Video", variant="primary")
|
99 |
+
status_text = gr.Textbox(label="Status", interactive=False)
|
100 |
+
json_output = gr.JSON(label="Analysis Results")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
|
102 |
+
submit_button.click(
|
103 |
+
analyze_video,
|
104 |
+
inputs=[video_url_input],
|
105 |
+
outputs=[status_text, json_output],
|
106 |
+
api_name="analyze_video"
|
107 |
+
)
|
108 |
+
gr.Examples(
|
109 |
+
examples=["https://www.youtube.com/watch?v=3wLg_t_H2Xw", "https://www.youtube.com/watch?v=h42dDpgE7g8"],
|
110 |
+
inputs=video_url_input,
|
111 |
+
fn=analyze_video,
|
112 |
+
outputs=[status_text, json_output]
|
113 |
+
)
|
114 |
+
|
115 |
+
with gr.Tab("Topic Video Analysis"):
|
116 |
+
gr.Markdown("## Analyze multiple videos based on a topic")
|
117 |
+
with gr.Row():
|
118 |
+
topic_input = gr.Textbox(label="Enter a topic", placeholder="e.g., 'Apple Vision Pro review'", scale=3)
|
119 |
+
max_videos_slider = gr.Slider(minimum=1, maximum=5, value=2, step=1, label="Number of Videos to Analyze")
|
120 |
+
topic_submit_button = gr.Button("Analyze Topic", variant="primary")
|
121 |
+
topic_status_text = gr.Textbox(label="Status", interactive=False)
|
122 |
+
topic_json_output = gr.JSON(label="Analysis Results")
|
123 |
|
124 |
+
topic_submit_button.click(
|
125 |
+
analyze_topic,
|
126 |
+
inputs=[topic_input, max_videos_slider],
|
127 |
+
outputs=[topic_status_text, topic_json_output],
|
128 |
+
api_name="analyze_topic"
|
129 |
+
)
|
130 |
gr.Examples(
|
131 |
+
examples=[["self-driving car technology", 2], ["open source large language models", 3]],
|
132 |
+
inputs=[topic_input, max_videos_slider],
|
133 |
+
fn=analyze_topic,
|
134 |
+
outputs=[topic_status_text, topic_json_output]
|
|
|
135 |
)
|
136 |
+
|
137 |
+
# Set environment variables in your Hugging Face Space settings, not here.
|
138 |
+
# BACKEND_VIDEO_URL = "https://your-modal-or-backend-url/process_video_analysis"
|
139 |
+
# BACKEND_TOPIC_URL = "https://your-modal-or-backend-url/analyze_topic"
|
140 |
+
|
141 |
+
demo.launch()
|
142 |
gr.Markdown("**Processing can take several minutes** depending on video length and model inference times. The cache on the Modal backend will speed up repeated requests for the same video.")
|
143 |
|
144 |
with gr.Tab("Demo (for Manual Testing)"):
|