File size: 41,427 Bytes
0cff18c
fb2e8d8
b6e00fe
 
 
 
0cff18c
 
fb2e8d8
b046b1d
 
 
 
 
cc456c6
b046b1d
b6e00fe
 
fb2e8d8
 
b046b1d
 
 
 
 
fb2e8d8
 
5d99cfb
fb2e8d8
 
 
5d99cfb
fb2e8d8
b6e00fe
0cff18c
 
 
fb2e8d8
 
 
 
 
 
 
 
 
b6e00fe
 
 
 
0cff18c
 
 
fb2e8d8
 
0cff18c
b046b1d
 
b6e00fe
 
 
 
 
b046b1d
 
 
b6e00fe
 
b046b1d
 
 
 
 
cc456c6
fb2e8d8
 
0cff18c
fb2e8d8
0cff18c
 
fb2e8d8
 
 
0cff18c
fb2e8d8
0cff18c
 
 
 
fb2e8d8
0cff18c
fb2e8d8
 
0cff18c
fb2e8d8
 
0cff18c
fb2e8d8
 
b6e00fe
fb2e8d8
 
 
 
 
 
 
 
 
 
 
 
0cff18c
fb2e8d8
 
0cff18c
fb2e8d8
0cff18c
 
 
 
fb2e8d8
 
 
 
 
 
 
 
 
0cff18c
fb2e8d8
 
0cff18c
fb2e8d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b6e00fe
 
 
 
 
 
 
 
fb2e8d8
 
 
0cff18c
fb2e8d8
0cff18c
fb2e8d8
 
0cff18c
fb2e8d8
 
 
 
5d99cfb
fb2e8d8
5d99cfb
b6e00fe
5d99cfb
fb2e8d8
 
5d99cfb
fb2e8d8
 
5d99cfb
b6e00fe
fb2e8d8
5d99cfb
fb2e8d8
5d99cfb
fb2e8d8
5d99cfb
 
fb2e8d8
 
 
 
 
 
 
 
5d99cfb
fb2e8d8
 
 
 
 
 
 
b6e00fe
fb2e8d8
 
 
 
 
 
b6e00fe
 
 
 
 
 
 
5d99cfb
 
fb2e8d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b046b1d
fb2e8d8
 
b6e00fe
fb2e8d8
 
 
 
 
 
 
 
 
 
 
5d99cfb
fb2e8d8
 
 
5d99cfb
 
 
 
 
fb2e8d8
 
 
 
 
 
 
5d99cfb
fb2e8d8
 
 
b6e00fe
fb2e8d8
 
5d99cfb
fb2e8d8
 
 
 
 
 
 
 
5d99cfb
fb2e8d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b6e00fe
fb2e8d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5d99cfb
fb2e8d8
 
 
 
 
 
 
 
b6e00fe
fb2e8d8
 
5d99cfb
fb2e8d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5d99cfb
fb2e8d8
5d99cfb
 
fb2e8d8
5d99cfb
 
fb2e8d8
5d99cfb
fb2e8d8
 
5d99cfb
b6e00fe
5d99cfb
fb2e8d8
 
 
 
5d99cfb
fb2e8d8
 
 
5d99cfb
fb2e8d8
b6e00fe
fb2e8d8
 
 
 
 
 
5d99cfb
fb2e8d8
5d99cfb
 
fb2e8d8
 
 
b6e00fe
fb2e8d8
 
 
5d99cfb
fb2e8d8
5d99cfb
b6e00fe
5d99cfb
fb2e8d8
 
5d99cfb
fb2e8d8
5d99cfb
b6e00fe
5d99cfb
fb2e8d8
 
5d99cfb
fb2e8d8
5d99cfb
b6e00fe
5d99cfb
fb2e8d8
 
 
 
 
b6e00fe
fb2e8d8
 
 
 
 
 
 
b046b1d
b6e00fe
b046b1d
 
 
 
 
 
 
 
 
fb2e8d8
b6e00fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca1f3b0
 
 
 
 
 
 
 
 
 
 
 
 
 
b6e00fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b046b1d
 
b6e00fe
fb2e8d8
 
8432008
b046b1d
 
 
8432008
b046b1d
 
5d99cfb
b6e00fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb2e8d8
5d99cfb
b6e00fe
fb2e8d8
 
5d99cfb
fb2e8d8
b6e00fe
fb2e8d8
b6e00fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb2e8d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ee0209c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb2e8d8
ee0209c
 
fb2e8d8
ee0209c
 
 
 
 
 
 
fb2e8d8
 
ee0209c
 
fb2e8d8
ee0209c
 
fb2e8d8
ee0209c
fb2e8d8
ee0209c
5d99cfb
ee0209c
 
 
 
 
 
fb2e8d8
 
 
 
 
 
 
 
 
 
 
 
 
 
ee0209c
 
 
 
 
 
 
 
fb2e8d8
ee0209c
fb2e8d8
ee0209c
 
 
5d99cfb
fb2e8d8
 
5d99cfb
 
fb2e8d8
 
 
 
 
 
5d99cfb
fb2e8d8
 
5d99cfb
fb2e8d8
 
 
 
 
 
 
 
 
 
 
 
 
 
5d99cfb
fb2e8d8
 
 
5d99cfb
fb2e8d8
 
 
 
 
5d99cfb
fb2e8d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
import modal
from fastapi import FastAPI, UploadFile, File, Body, Query
from fastapi.responses import JSONResponse

web_app = FastAPI(title="MCP Video Analysis API")

import os
import tempfile
import io # Used by Whisper for BytesIO
import httpx # For downloading videos from URLs
from typing import Optional, List, Dict, Any
import json
import hashlib
from fastapi.responses import JSONResponse
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
import re # For parsing search results
import yt_dlp  
import asyncio # For concurrent video processing

import gradio as gr

# Global Configuration (should be at the top of the file)
WHISPER_MODEL_NAME = "openai/whisper-large-v3" # Use latest Whisper model
CAPTION_MODEL_NAME = "microsoft/xclip-base-patch16" # For SpaceTimeGPT alternative
CAPTION_PROCESSOR_NAME = "MCG-NJU/videomae-base" # For SpaceTimeGPT's video encoder
# CAPTION_TOKENIZER_NAME = "gpt2" # For SpaceTimeGPT's text decoder (usually part of processor)
ACTION_MODEL_NAME = "MCG-NJU/videomae-base-finetuned-kinetics"
ACTION_PROCESSOR_NAME = "MCG-NJU/videomae-base" # Or VideoMAEImageProcessor.from_pretrained(ACTION_MODEL_NAME)
OBJECT_DETECTION_MODEL_NAME = "facebook/detr-resnet-50"
OBJECT_DETECTION_PROCESSOR_NAME = "facebook/detr-resnet-50"

# --- Modal Image Definition ---
video_analysis_image_v2 = (
    modal.Image.debian_slim(python_version="3.10")
    .apt_install("ffmpeg")
    .pip_install(
        "gradio==3.50.2", # Pin Gradio version for stability
        "transformers[torch]", # For all Hugging Face models and PyTorch
        "soundfile", # For Whisper
        "av",        # For video frame extraction
        "Pillow",    # For image processing
        "timm",      # Often a dependency for vision models
        "torchvision",
        "torchaudio",
        "fastapi[standard]", # For web endpoints
        "pydantic",
        "yt-dlp",          # For request body validation
        "httpx",             # For downloading video from URL
        "cowsay==6.1"        # Cache-busting package
    )
)

# --- Modal App Definition ---
app = modal.App(name="video-analysis-gradio-pipeline") # New app name, using App

# --- Pydantic model for web endpoint request ---
class VideoAnalysisRequestPayload(BaseModel):
    video_url: Optional[str] = None

class TopicAnalysisRequest(BaseModel):
    topic: str
    max_videos: int = Query(3, ge=1, le=10) # Default 3, min 1, max 10 videos

# --- Constants for Model Names ---
# WHISPER_MODEL_NAME = "openai/whisper-large-v3"
CAPTION_MODEL_NAME = "Neleac/SpaceTimeGPT"
CAPTION_PROCESSOR_NAME = "Neleac/SpaceTimeGPT" # Use processor from SpaceTimeGPT itself
# # CAPTION_TOKENIZER_NAME = "gpt2" # For SpaceTimeGPT's text decoder (usually part of processor)
# ACTION_MODEL_NAME = "MCG-NJU/videomae-base-finetuned-kinetics"
# ACTION_PROCESSOR_NAME = "MCG-NJU/videomae-base" # Or VideoMAEImageProcessor.from_pretrained(ACTION_MODEL_NAME)
# OBJECT_DETECTION_MODEL_NAME = "facebook/detr-resnet-50"
# OBJECT_DETECTION_PROCESSOR_NAME = "facebook/detr-resnet-50"

# --- Modal Distributed Dictionary for Caching --- 
video_analysis_cache = modal.Dict.from_name("video_analysis_cache", create_if_missing=True)

# --- Hugging Face Token Secret ---
HF_TOKEN_SECRET = modal.Secret.from_name("my-huggingface-secret")

# --- Helper: Hugging Face Login ---
def _login_to_hf():
    import os
    from huggingface_hub import login
    hf_token = os.environ.get("HF_TOKEN")
    if hf_token:
        try:
            login(token=hf_token)
            print("Successfully logged into Hugging Face Hub.")
            return True
        except Exception as e:
            print(f"Hugging Face Hub login failed: {e}")
            return False
    else:
        print("HF_TOKEN secret not found. Some models might fail to load.")
        return False

# === 1. Transcription with Whisper ===
@app.function(
    image=video_analysis_image_v2,
    secrets=[HF_TOKEN_SECRET],
    gpu="any",
    timeout=600
)
def transcribe_video_with_whisper(video_bytes: bytes) -> str:
    _login_to_hf()
    import torch
    from transformers import pipeline
    import soundfile as sf
    import av # For robust audio extraction
    import numpy as np
    import io

    print("[Whisper] Starting transcription.")
    temp_audio_path = None
    try:
        # Robust audio extraction using PyAV
        with tempfile.NamedTemporaryFile(delete=False, suffix=".mp4") as tmp_video_file:
            tmp_video_file.write(video_bytes)
            video_path = tmp_video_file.name
        
        container = av.open(video_path)
        audio_stream = next((s for s in container.streams if s.type == 'audio'), None)
        if audio_stream is None:
            return "Whisper Error: No audio stream found in video."

        # Decode and resample audio to 16kHz mono WAV
        # Store resampled audio in a temporary WAV file
        with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_audio_file_for_sf:
            temp_audio_path = tmp_audio_file_for_sf.name
        
        output_container = av.open(temp_audio_path, mode='w')
        output_stream = output_container.add_stream('pcm_s16le', rate=16000, layout='mono')

        for frame in container.decode(audio_stream):
            for packet in output_stream.encode(frame):
                output_container.mux(packet)
        
        # Flush stream
        for packet in output_stream.encode():
            output_container.mux(packet)

        output_container.close()
        container.close()
        os.remove(video_path) # Clean up temp video file

        pipe = pipeline(
            "automatic-speech-recognition",
            model=WHISPER_MODEL_NAME,
            torch_dtype=torch.float16,
            device="cuda:0" if torch.cuda.is_available() else "cpu",
        )
        print(f"[Whisper] Pipeline loaded. Transcribing {temp_audio_path}...")
        # Add robust error handling for the Whisper model
        try:
            outputs = pipe(temp_audio_path, chunk_length_s=30, stride_length_s=5, batch_size=8, generate_kwargs={"language": "english"}, return_timestamps=False)
        except Exception as whisper_err:
            print(f"[Whisper] Error during transcription: {whisper_err}")
            # Try again with different settings if the first attempt failed
            print(f"[Whisper] Attempting fallback transcription with smaller chunk size...")
            outputs = pipe(temp_audio_path, chunk_length_s=10, stride_length_s=2, batch_size=4, generate_kwargs={"language": "english"}, return_timestamps=False)
        transcription = outputs["text"]
        print(f"[Whisper] Transcription successful: {transcription[:100]}...")
        return transcription
    except Exception as e:
        print(f"[Whisper] Error: {e}")
        import traceback
        traceback.print_exc()
        return f"Whisper Error: {str(e)}"
    finally:
        if temp_audio_path and os.path.exists(temp_audio_path):
            os.remove(temp_audio_path)
        if 'video_path' in locals() and video_path and os.path.exists(video_path):
             os.remove(video_path) # Ensure temp video is cleaned up if audio extraction failed early

# === 2. Captioning with SpaceTimeGPT ===
@app.function(
    image=video_analysis_image_v2,
    secrets=[HF_TOKEN_SECRET],
    gpu="any",
    timeout=600
)
def generate_captions_with_spacetimegpt(video_bytes: bytes) -> str:
    _login_to_hf()
    import torch
    from transformers import AutoProcessor, AutoModelForVision2Seq
    import av
    import numpy as np
    import tempfile

    print("[SpaceTimeGPT] Starting captioning.")
    video_path = None
    try:
        with tempfile.NamedTemporaryFile(delete=False, suffix=".mp4") as tmp_video_file:
            tmp_video_file.write(video_bytes)
            video_path = tmp_video_file.name

        container = av.open(video_path)
        video_stream = next((s for s in container.streams if s.type == 'video'), None)
        if video_stream is None:
            return "SpaceTimeGPT Error: No video stream found."
        
        num_frames_to_sample = 16
        total_frames = video_stream.frames
        if total_frames == 0: return "SpaceTimeGPT Error: Video has no frames."

        indices = np.linspace(0, total_frames - 1, num_frames_to_sample, dtype=int)
        frames = []
        for i in indices:
            container.seek(int(i), stream=video_stream)
            frame = next(container.decode(video_stream))
            frames.append(frame.to_rgb().to_ndarray())
        container.close()
        video_frames_np = np.stack(frames)

        processor = AutoProcessor.from_pretrained(CAPTION_PROCESSOR_NAME, trust_remote_code=True)
        
        # Debug prints
        print(f"[SpaceTimeGPT] DEBUG: CAPTION_MODEL_NAME is {CAPTION_MODEL_NAME}")
        print(f"[SpaceTimeGPT] DEBUG: Intending to use model class: {AutoModelForVision2Seq.__name__}")
        print(f"[SpaceTimeGPT] DEBUG: Type of model class object: {type(AutoModelForVision2Seq)}")
        
        model = AutoModelForVision2Seq.from_pretrained(CAPTION_MODEL_NAME, trust_remote_code=True)
        device = "cuda:0" if torch.cuda.is_available() else "cpu"
        model.to(device)
        if hasattr(processor, 'tokenizer'): # Check if tokenizer exists
            processor.tokenizer.padding_side = "right"

        print("[SpaceTimeGPT] Model and processor loaded. Generating captions...")
        inputs = processor(text=None, videos=list(video_frames_np), return_tensors="pt", padding=True).to(device)
        
        generated_ids = model.generate(**inputs, max_new_tokens=128)
        captions = processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()
        
        print(f"[SpaceTimeGPT] Captioning successful: {captions}")
        return captions
    except Exception as e:
        print(f"[SpaceTimeGPT] Error: {e}")
        import traceback
        traceback.print_exc()
        return f"SpaceTimeGPT Error: {str(e)}"
    finally:
        if video_path and os.path.exists(video_path):
            os.remove(video_path)


# === 3. Action Recognition with VideoMAE ===
@app.function(
    image=video_analysis_image_v2,
    secrets=[HF_TOKEN_SECRET],
    gpu="any",
    timeout=600
)
def generate_action_labels(video_bytes: bytes) -> List[Dict[str, Any]]:
    _login_to_hf()
    import torch
    from transformers import VideoMAEImageProcessor, VideoMAEForVideoClassification
    import av
    import numpy as np
    import tempfile

    print("[VideoMAE] Starting action recognition.")
    video_path = None
    try:
        with tempfile.NamedTemporaryFile(delete=False, suffix=".mp4") as tmp_video_file:
            tmp_video_file.write(video_bytes)
            video_path = tmp_video_file.name

        container = av.open(video_path)
        video_stream = next((s for s in container.streams if s.type == 'video'), None)
        if video_stream is None:
            return [{"error": "VideoMAE Error: No video stream found."}]

        num_frames_to_sample = 16
        total_frames = video_stream.frames
        if total_frames == 0: return [{"error": "VideoMAE Error: Video has no frames."}]
        
        indices = np.linspace(0, total_frames - 1, num_frames_to_sample, dtype=int)
        video_frames_list = []
        for i in indices:
            container.seek(int(i), stream=video_stream)
            frame = next(container.decode(video_stream))
            video_frames_list.append(frame.to_rgb().to_ndarray())
        container.close()

        processor = VideoMAEImageProcessor.from_pretrained(ACTION_PROCESSOR_NAME)
        model = VideoMAEForVideoClassification.from_pretrained(ACTION_MODEL_NAME)
        device = "cuda:0" if torch.cuda.is_available() else "cpu"
        model.to(device)

        print("[VideoMAE] Model and processor loaded. Classifying actions...")
        inputs = processor(video_frames_list, return_tensors="pt").to(device)
        
        with torch.no_grad():
            outputs = model(**inputs)
            logits = outputs.logits

        top_k = 5
        probabilities = torch.softmax(logits, dim=-1)
        top_probs, top_indices = torch.topk(probabilities, top_k)
        
        results = []
        for i in range(top_k):
            label = model.config.id2label[top_indices[0, i].item()]
            score = top_probs[0, i].item()
            results.append({"action": label, "confidence": round(score, 4)})
        
        print(f"[VideoMAE] Action recognition successful: {results}")
        return results
    except Exception as e:
        print(f"[VideoMAE] Error: {e}")
        import traceback
        traceback.print_exc()
        return [{"error": f"VideoMAE Error: {str(e)}"}]
    finally:
        if video_path and os.path.exists(video_path):
            os.remove(video_path)


# === 4. Object Detection with DETR ===
@app.function(
    image=video_analysis_image_v2,
    secrets=[HF_TOKEN_SECRET],
    gpu="any",
    timeout=600
)
def generate_object_detection(video_bytes: bytes) -> List[Dict[str, Any]]:
    _login_to_hf()
    import torch
    from transformers import DetrImageProcessor, DetrForObjectDetection
    from PIL import Image # Imported but not directly used, av.frame.to_image() is used
    import av
    import numpy as np
    import tempfile

    print("[DETR] Starting object detection.")
    video_path = None
    try:
        with tempfile.NamedTemporaryFile(delete=False, suffix=".mp4") as tmp_video_file:
            tmp_video_file.write(video_bytes)
            video_path = tmp_video_file.name

        container = av.open(video_path)
        video_stream = next((s for s in container.streams if s.type == 'video'), None)
        if video_stream is None:
            return [{"error": "DETR Error: No video stream found."}]

        num_frames_to_extract = 3
        total_frames = video_stream.frames
        if total_frames == 0: return [{"error": "DETR Error: Video has no frames."}]

        frame_indices = np.linspace(0, total_frames - 1, num_frames_to_extract, dtype=int)
        
        processor = DetrImageProcessor.from_pretrained(OBJECT_DETECTION_PROCESSOR_NAME)
        model = DetrForObjectDetection.from_pretrained(OBJECT_DETECTION_MODEL_NAME)
        device = "cuda:0" if torch.cuda.is_available() else "cpu"
        model.to(device)
        print("[DETR] Model and processor loaded.")

        all_frame_detections = []
        for frame_num, target_frame_index in enumerate(frame_indices):
            container.seek(int(target_frame_index), stream=video_stream)
            frame = next(container.decode(video_stream))
            pil_image = frame.to_image()

            print(f"[DETR] Processing frame {frame_num + 1}/{num_frames_to_extract} (original index {target_frame_index})...")
            inputs = processor(images=pil_image, return_tensors="pt").to(device)
            outputs = model(**inputs)

            target_sizes = torch.tensor([pil_image.size[::-1]], device=device)
            results = processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.7)[0]
            
            frame_detections = []
            for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
                frame_detections.append({
                    "label": model.config.id2label[label.item()],
                    "confidence": round(score.item(), 3),
                    "box": [round(coord) for coord in box.tolist()]
                })
            if frame_detections: # Only add if detections are present for this frame
                all_frame_detections.append({
                    "frame_number": frame_num + 1,
                    "original_frame_index": int(target_frame_index),
                    "detections": frame_detections
                })
        container.close()
        print(f"[DETR] Object detection successful: {all_frame_detections if all_frame_detections else 'No objects detected with threshold.'}")
        return all_frame_detections if all_frame_detections else [{"info": "No objects detected with current threshold."}]
    except Exception as e:
        print(f"[DETR] Error: {e}")
        import traceback
        traceback.print_exc()
        return [{"error": f"DETR Error: {str(e)}"}]
    finally:
        if video_path and os.path.exists(video_path):
            os.remove(video_path)


# === 5. Comprehensive Video Analysis (Orchestrator) ===
@app.function(
    image=video_analysis_image_v2,
    secrets=[HF_TOKEN_SECRET],
    gpu="any", # Request GPU as some sub-tasks will need it
    timeout=1800, # Generous timeout for all models
    # allow_concurrent_inputs=10, # Optional: if you expect many parallel requests
    # keep_warm=1 # Optional: to keep one instance warm for faster cold starts
)
async def analyze_video_comprehensive(video_bytes: bytes) -> Dict[str, Any]:
    print("[Orchestrator] Starting comprehensive video analysis.")
    cache_key = hashlib.sha256(video_bytes).hexdigest()

    try:
        cached_result = video_analysis_cache.get(cache_key)
        if cached_result:
            print(f"[Orchestrator] Cache hit for key: {cache_key}")
            return cached_result
    except Exception as e:
        # Log error but proceed with analysis if cache get fails
        print(f"[Orchestrator] Cache GET error: {e}. Proceeding with fresh analysis.")

    print(f"[Orchestrator] Cache miss for key: {cache_key}. Performing full analysis.")
    results = {}

    print("[Orchestrator] Calling transcription...")
    try:
        # .call() is synchronous in the context of the Modal function execution
        results["transcription"] = transcribe_video_with_whisper.remote(video_bytes)
    except Exception as e:
        print(f"[Orchestrator] Error in transcription: {e}")
        results["transcription"] = f"Transcription Error: {str(e)}"

    print("[Orchestrator] Calling captioning...")
    try:
        results["caption"] = generate_captions_with_spacetimegpt.remote(video_bytes)
    except Exception as e:
        print(f"[Orchestrator] Error in captioning: {e}")
        results["caption"] = f"Captioning Error: {str(e)}"

    print("[Orchestrator] Calling action recognition...")
    try:
        results["actions"] = generate_action_labels.remote(video_bytes)
    except Exception as e:
        print(f"[Orchestrator] Error in action recognition: {e}")
        results["actions"] = [{"error": f"Action Recognition Error: {str(e)}"}] # Ensure list type for error

    print("[Orchestrator] Calling object detection...")
    try:
        results["objects"] = generate_object_detection.remote(video_bytes)
    except Exception as e:
        print(f"[Orchestrator] Error in object detection: {e}")
        results["objects"] = [{"error": f"Object Detection Error: {str(e)}"}] # Ensure list type for error
    
    print("[Orchestrator] All analyses attempted. Storing results in cache.")
    try:
        video_analysis_cache.put(cache_key, results)
        print(f"[Orchestrator] Successfully cached results for key: {cache_key}")
    except Exception as e:
        print(f"[Orchestrator] Cache PUT error: {e}")

    return results


# === FastAPI Endpoint for Video Analysis ===
@web_app.post("/process_video_analysis")
def process_video_analysis(payload: VideoAnalysisRequestPayload):
    """FastAPI endpoint for comprehensive video analysis."""
    print(f"[FastAPI Endpoint] Received request for video analysis")
    
    video_url = payload.video_url
    if not video_url:
        return JSONResponse(status_code=400, content={"error": "video_url must be provided in JSON payload."})
    
    print(f"[FastAPI Endpoint] Processing video_url: {video_url}")
    try:
        # Download video using yt-dlp with enhanced options for robustness
        import yt_dlp
        import tempfile
        import os
        import subprocess
        import shutil

        video_bytes = None
        with tempfile.TemporaryDirectory() as tmpdir:
            output_base = os.path.join(tmpdir, 'video')
            output_path = output_base + '.mp4'
            
            # Enhanced yt-dlp options for more reliable downloads
            ydl_opts = {
                # Request specific formats in priority order
                'format': 'bestvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best',
                'outtmpl': output_base,
                'quiet': False,  # Temporarily enable output for debugging
                'verbose': True,  # More verbose output to diagnose issues
                'no_warnings': False,  # Show warnings for debugging
                'noplaylist': True,
                # Force remux to ensure valid container
                'merge_output_format': 'mp4',
                # Add postprocessors to ensure valid MP4
                'postprocessors': [{
                    'key': 'FFmpegVideoConvertor',
                    'preferedformat': 'mp4',
                    'postprocessor_args': ['-movflags', '+faststart'],
                }],
                # Force ffmpeg to create a valid MP4 with moov atom at the beginning
                'prefer_ffmpeg': True,
                'http_headers': {
                    'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/108.0.0.0 Safari/537.36'
                },
            }
            
            try:
                print(f"[FastAPI Endpoint] Downloading video with enhanced yt-dlp options from {video_url}")
                download_success = False
                
                # Try yt-dlp first
                try:
                    with yt_dlp.YoutubeDL(ydl_opts) as ydl:
                        ydl.download([video_url])
                    
                    # Find the actual output file (might have a different extension)
                    downloaded_files = [f for f in os.listdir(tmpdir) if f.startswith('video')]
                    if downloaded_files:
                        actual_file = os.path.join(tmpdir, downloaded_files[0])
                        print(f"[FastAPI Endpoint] Found downloaded file: {actual_file}")
                        download_success = True
                except Exception as e:
                    print(f"[FastAPI Endpoint] yt-dlp download failed: {e}. Trying direct download...")
                    
                # Fallback to direct download if it's a direct video URL
                if not download_success and (video_url.endswith('.mp4') or 'commondatastorage.googleapis.com' in video_url):
                    import requests
                    try:
                        print(f"[FastAPI Endpoint] Attempting direct download for {video_url}")
                        actual_file = os.path.join(tmpdir, 'direct_video.mp4')
                        with requests.get(video_url, stream=True) as r:
                            r.raise_for_status()
                            with open(actual_file, 'wb') as f:
                                for chunk in r.iter_content(chunk_size=8192):
                                    f.write(chunk)
                        print(f"[FastAPI Endpoint] Direct download successful: {actual_file}")
                        download_success = True
                    except Exception as e:
                        print(f"[FastAPI Endpoint] Direct download failed: {e}")
                
                # For testing: Try a sample video if all downloads failed (Big Buck Bunny)
                if not download_success:
                    test_url = "http://commondatastorage.googleapis.com/gtv-videos-bucket/sample/BigBuckBunny.mp4"
                    print(f"[FastAPI Endpoint] All downloads failed. Falling back to sample video: {test_url}")
                    import requests
                    try:
                        actual_file = os.path.join(tmpdir, 'fallback_video.mp4')
                        with requests.get(test_url, stream=True) as r:
                            r.raise_for_status()
                            with open(actual_file, 'wb') as f:
                                for chunk in r.iter_content(chunk_size=8192):
                                    f.write(chunk)
                        print(f"[FastAPI Endpoint] Fallback download successful")
                        download_success = True
                    except Exception as e:
                        print(f"[FastAPI Endpoint] Even fallback download failed: {e}")
                        raise Exception("All download methods failed")
                
                # Ensure it's a properly formatted MP4 using ffmpeg directly
                final_output = os.path.join(tmpdir, 'final_video.mp4')
                try:
                    # Use ffmpeg to re-encode the file, ensuring proper moov atom placement
                    print(f"[FastAPI Endpoint] Reprocessing with ffmpeg to ensure valid MP4 format")
                    subprocess.run(
                        ["ffmpeg", "-i", actual_file, "-c:v", "copy", "-c:a", "copy", "-movflags", "faststart", final_output],
                        check=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE
                    )

                    if os.path.exists(final_output) and os.path.getsize(final_output) > 0:
                        with open(final_output, 'rb') as f:
                            video_bytes = f.read()
                            print(f"[FastAPI Endpoint] Successfully reprocessed video, size: {len(video_bytes)} bytes")
                    else:
                        print(f"[FastAPI Endpoint] ffmpeg reprocessing failed to produce valid output")
                except subprocess.SubprocessError as se:
                    print(f"[FastAPI Endpoint] ffmpeg reprocessing failed: {se}")
                    # If ffmpeg fails, try with the original file
                    if os.path.exists(actual_file) and os.path.getsize(actual_file) > 0:
                        with open(actual_file, 'rb') as f:
                            video_bytes = f.read()
                            print(f"[FastAPI Endpoint] Using original download, size: {len(video_bytes)} bytes")
            except yt_dlp.utils.DownloadError:
                # Fallback to httpx for direct links if yt-dlp fails
                print(f"[FastAPI Endpoint] yt-dlp failed, falling back to httpx for {video_url}")
                try:
                    import httpx
                    with httpx.Client() as client:
                        response = client.get(video_url, follow_redirects=True, timeout=60.0)
                        response.raise_for_status()
                        video_bytes = response.content
                except httpx.RequestError as he:
                     return JSONResponse(status_code=400, content={"error": f"Failed to download video from URL using both yt-dlp and httpx. Details: {he}"})

        if not video_bytes:
            return JSONResponse(status_code=400, content={"error": f"Downloaded video from URL {video_url} is empty or download failed."})
        
        print(f"[FastAPI Endpoint] Successfully downloaded and validated {len(video_bytes)} bytes from {video_url} using enhanced downloader.")
        
        # Call comprehensive analysis
        analysis_results = analyze_video_comprehensive.remote(video_bytes)
        print("[FastAPI Endpoint] Comprehensive analysis finished.")
        return JSONResponse(status_code=200, content=analysis_results)
        
    except httpx.RequestError as e:
        print(f"[FastAPI Endpoint] httpx.RequestError downloading video: {e}")
        return JSONResponse(status_code=400, content={"error": f"Error downloading video from URL: {video_url}. Details: {str(e)}"})
    except Exception as e:
        print(f"[FastAPI Endpoint] Unexpected Exception during analysis: {e}")
        return JSONResponse(status_code=500, content={"error": f"Unexpected server error during analysis: {str(e)}"})

# === FastAPI Endpoint for Topic Analysis ===
@web_app.post("/analyze_topic")
async def handle_analyze_topic_request(request: TopicAnalysisRequest):
    """
    Handles a request to analyze videos based on a topic.
    1. Finds video URLs for the topic using YouTube search.
    2. Concurrently analyzes these videos.
    3. Returns aggregated results.
    """
    print(f"[TopicAPI] Received request to analyze topic: '{request.topic}', max_videos: {request.max_videos}")
    
    try:
        # Use .aio for async call if the Modal function is async, or just .remote if it's sync
        # Assuming find_video_urls_for_topic is sync as defined, but can be called with .remote()
        # If find_video_urls_for_topic itself becomes async, then .remote.aio() is appropriate.
        # For now, let's assume it's called as a standard remote Modal function.
        video_urls = await find_video_urls_for_topic.remote.aio(request.topic, request.max_videos)
        
        if not video_urls:
            print(f"[TopicAPI] No video URLs found for topic: '{request.topic}'")
            return JSONResponse(
                status_code=404,
                content={
                    "status": "error",
                    "message": "No videos found for the specified topic.",
                    "topic": request.topic,
                    "details": "The YouTube search did not return any relevant video URLs."
                }
            )
        
        print(f"[TopicAPI] Found {len(video_urls)} URLs for topic '{request.topic}', proceeding to analysis.")
        
        # analyze_videos_by_topic is an async Modal function, so use .remote.aio()
        analysis_results = await analyze_videos_by_topic.remote.aio(video_urls, request.topic)
        
        print(f"[TopicAPI] Successfully analyzed videos for topic: '{request.topic}'")
        return analysis_results

    except Exception as e:
        print(f"[TopicAPI] Error during topic analysis for '{request.topic}': {e}")
        import traceback
        traceback.print_exc()
        return JSONResponse(
            status_code=500,
            content={
                "status": "error",
                "message": "An internal server error occurred during topic analysis.",
                "topic": request.topic,
                "error_details_str": str(e) # Keep it simple for JSON
            }
        )

# === 6. Topic-Based Video Search ===
@app.function(
    image=video_analysis_image_v2, 
    secrets=[HF_TOKEN_SECRET], 
    timeout=300
)
def find_video_urls_for_topic(topic: str, max_results: int = 3) -> List[str]:
    """Finds video URLs (YouTube) for a given topic using yt-dlp."""
    print(f"[TopicSearch] Finding video URLs for topic: '{topic}', max_results={max_results}")
    video_urls = []
    try:
        # Add a common user-agent to avoid getting blocked
        # Let yt-dlp find ffmpeg in the PATH instead of hardcoding it
        ydl_opts = {
            'quiet': True,
            'extract_flat': 'discard_in_playlist',
            'force_generic_extractor': False,
            'default_search': f"ytsearch{max_results}",
            'noplaylist': True,
            'prefer_ffmpeg': True,
            'http_headers': {
                'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/108.0.0.0 Safari/537.36'
            }
        }
        with yt_dlp.YoutubeDL(ydl_opts) as ydl:
            # extract_info with a search query like 'ytsearchN:query' returns a playlist dictionary
            search_result = ydl.extract_info(topic, download=False)
            if search_result and 'entries' in search_result:
                for entry in search_result['entries']:
                    # Ensure entry is a dictionary and has 'webpage_url'
                    if isinstance(entry, dict) and entry.get('webpage_url'):
                        video_urls.append(entry['webpage_url'])
                        # yt-dlp search might return more than max_results, so we cap it here
                        if len(video_urls) >= max_results:
                            break 
            # Sometimes a single video result might not be in 'entries'
            elif isinstance(search_result, dict) and search_result.get('webpage_url'): 
                video_urls.append(search_result['webpage_url'])

        # Ensure we don't exceed max_results if the loop didn't break early enough
        video_urls = video_urls[:max_results]
        print(f"[TopicSearch] Found {len(video_urls)} video URLs for topic '{topic}': {video_urls}")
    except Exception as e:
        print(f"[TopicSearch] Error finding videos for topic '{topic}': {e}")
        import traceback
        traceback.print_exc()
    return video_urls

# Helper function (not a Modal function) to extract video URLs from search results
def extract_video_urls_from_search(search_results: List[Dict[str, str]], max_urls: int = 3) -> List[str]:
    """Extracts video URLs from a list of search result dictionaries."""
    video_urls = []
    seen_urls = set()

    # Regex for YouTube, Vimeo, and common video file extensions
    # Simplified YouTube regex to catch most common video and shorts links
    youtube_regex = r"(?:https?://)?(?:www\.)?(?:youtube\.com/(?:watch\?v=|embed/|shorts/)|youtu\.be/)([a-zA-Z0-9_-]{11})"
    vimeo_regex = r"(?:https?://)?(?:www\.)?vimeo\.com/(\d+)"
    direct_video_regex = r"https?://[^\s]+\.(mp4|mov|avi|webm|mkv)(\?[^\s]*)?"

    patterns = [
        re.compile(youtube_regex),
        re.compile(vimeo_regex),
        re.compile(direct_video_regex)
    ]

    for item in search_results:
        url = item.get("link") or item.get("url") # Common keys for URL in search results
        if not url:
            continue

        for pattern in patterns:
            match = pattern.search(url)
            if match:
                # Reconstruct canonical YouTube URL if it's a short link or embed
                if pattern.pattern == youtube_regex and match.group(1):
                    normalized_url = f"https://www.youtube.com/watch?v={match.group(1)}"
                else:
                    normalized_url = url
                
                if normalized_url not in seen_urls:
                    video_urls.append(normalized_url)
                    seen_urls.add(normalized_url)
                    if len(video_urls) >= max_urls:
                        break
        if len(video_urls) >= max_urls:
            break
# === 7. Topic-Based Video Analysis Orchestrator ===
@app.function(
    image=video_analysis_image_v2,
    secrets=[HF_TOKEN_SECRET],
    timeout=1800,
)
async def _analyze_video_worker(video_url: str) -> dict:
    """
    Worker function to download a video from a URL and run comprehensive analysis.
    This is designed to be called concurrently.
    """
    print(f"[Worker] Starting analysis for {video_url}")
    try:
        async with httpx.AsyncClient() as client:
            print(f"[Worker] Downloading video from {video_url}")
            response = await client.get(video_url, follow_redirects=True, timeout=60.0)
            response.raise_for_status()
            video_bytes = await response.aread()
            print(f"[Worker] Downloaded {len(video_bytes)} bytes from {video_url}")

            if not video_bytes:
                raise ValueError("Downloaded video content is empty.")

            analysis_result = await analyze_video_comprehensive.coro(video_bytes)
            
            if isinstance(analysis_result, dict) and any("error" in str(v).lower() for v in analysis_result.values()):
                print(f"[Worker] Comprehensive analysis for {video_url} reported errors: {analysis_result}")
                return {"url": video_url, "status": "error", "error_type": "analysis_error", "details": analysis_result}
            else:
                return {"url": video_url, "status": "success", "analysis": analysis_result}
    
    except httpx.HTTPStatusError as e:
        print(f"[Worker] HTTP error downloading {video_url}: {e}")
        return {"url": video_url, "status": "error", "error_type": "download_error", "details": f"HTTP {e.response.status_code}"}
    except httpx.RequestError as e:
        print(f"[Worker] Request error downloading {video_url}: {e}")
        return {"url": video_url, "status": "error", "error_type": "download_error", "details": f"Failed to download: {str(e)}"}
    except Exception as e:
        print(f"[Worker] Error processing video {video_url}: {e}")
        import traceback
        return {"url": video_url, "status": "error", "error_type": "processing_error", "details": str(e), "traceback": traceback.format_exc()[:1000]}

@app.function(
    image=video_analysis_image_v2,
    secrets=[HF_TOKEN_SECRET],
    timeout=3600,
    gpu="any",
)
async def analyze_videos_by_topic(video_urls: List[str], topic: str) -> Dict[str, Any]:
    """Analyzes a list of videos (by URL) concurrently and aggregates results for a topic."""
    print(f"[TopicAnalysis] Starting concurrent analysis for topic: '{topic}' with {len(video_urls)} video(s).")
    
    results_aggregator = {
        "topic": topic,
        "analyzed_videos": [],
        "errors": []
    }

    if not video_urls:
        results_aggregator["errors"].append({"topic_error": "No video URLs provided or found for the topic."})
        return results_aggregator

    # Use .map to run the worker function concurrently on all video URLs
    # The list() call forces the generator to execute and retrieve all results.
    individual_results = list(_analyze_video_worker.map(video_urls))

    for result in individual_results:
        if isinstance(result, dict):
            if result.get("status") == "error":
                results_aggregator["errors"].append(result)
            else:
                results_aggregator["analyzed_videos"].append(result)
        else:
            # This case handles unexpected return types from the worker, like exceptions
            print(f"[TopicAnalysis] Received an unexpected result type from worker: {type(result)}")
            results_aggregator["errors"].append({"url": "unknown", "error_type": "unexpected_result", "details": str(result)})

    print(f"[TopicAnalysis] Finished concurrent analysis for topic '{topic}'.")
    return results_aggregator


# === Gradio Interface ===
def video_analyzer_gradio_ui():
    print("[Gradio] UI function called to define interface.")
    
    def analyze_video_all_models(video_filepath):
        print(f"[Gradio] Received video filepath for analysis: {video_filepath}")
        
        if not video_filepath or not os.path.exists(video_filepath):
            return "Error: Video file path is invalid or does not exist.", "", "[]", "[]"
        
        with open(video_filepath, "rb") as f:
            video_bytes_content = f.read()
        print(f"[Gradio] Read {len(video_bytes_content)} bytes from video path: {video_filepath}")

        if not video_bytes_content:
            return "Error: Could not read video bytes.", "", "[]", "[]"

        print("[Gradio] Calling Whisper...")
        transcription = transcribe_video_with_whisper.call(video_bytes_content)
        print(f"[Gradio] Whisper result length: {len(transcription)}")

        print("[Gradio] Calling SpaceTimeGPT...")
        captions = generate_captions_with_spacetimegpt.call(video_bytes_content)
        print(f"[Gradio] SpaceTimeGPT result: {captions}")
        
        print("[Gradio] Calling VideoMAE...")
        action_labels = generate_action_labels.call(video_bytes_content)
        print(f"[Gradio] VideoMAE result: {action_labels}")

        print("[Gradio] Calling DETR...")
        object_detections = generate_object_detection.call(video_bytes_content)
        print(f"[Gradio] DETR result: {object_detections}")
        
        return transcription, captions, str(action_labels), str(object_detections)

    with gr.Blocks(title="Comprehensive Video Analyzer", theme=gr.themes.Soft()) as demo:
        gr.Markdown("# Comprehensive Video Analyzer")
        gr.Markdown("Upload a video to get transcription, captions, action labels, and object detections.")
        
        with gr.Row():
            video_input = gr.Video(label="Upload Video", sources=["upload"], type="filepath")
        
        submit_button = gr.Button("Analyze Video", variant="primary")
        
        with gr.Tabs():
            with gr.TabItem("Transcription (Whisper)"):
                transcription_output = gr.Textbox(label="Transcription", lines=10, interactive=False)
            with gr.TabItem("Dense Captions (SpaceTimeGPT)"):
                caption_output = gr.Textbox(label="Captions", lines=10, interactive=False)
            with gr.TabItem("Action Recognition (VideoMAE)"):
                action_output = gr.Textbox(label="Predicted Actions (JSON format)", lines=10, interactive=False)
            with gr.TabItem("Object Detection (DETR)"):
                object_output = gr.Textbox(label="Detected Objects (JSON format)", lines=10, interactive=False)

        submit_button.click(
            fn=analyze_video_all_models,
            inputs=[video_input],
            outputs=[transcription_output, caption_output, action_output, object_output]
        )
        
        gr.Markdown("### Example Video")
        gr.Markdown("You can test with a short video. Processing may take a few minutes depending on video length and model inference times.")

    print("[Gradio] UI definition complete.")
    return gr.routes.App.create_app(demo)