shamik
commited on
feat: adding project files.
Browse files- .gitignore +194 -0
- README.md +13 -5
- app.py +78 -0
- requirements.txt +587 -0
- src/agent_hackathon/__init__.py +2 -0
- src/agent_hackathon/consts.py +3 -0
- src/agent_hackathon/create_vector_db.py +149 -0
- src/agent_hackathon/generate_arxiv_responses.py +108 -0
- src/agent_hackathon/logger.py +45 -0
- src/agent_hackathon/multiagent.py +146 -0
- src/agent_hackathon/py.typed +0 -0
- src/agent_hackathon/query_vector_db.py +79 -0
.gitignore
ADDED
@@ -0,0 +1,194 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Byte-compiled / optimized / DLL files
|
2 |
+
__pycache__/
|
3 |
+
*.py[cod]
|
4 |
+
*$py.class
|
5 |
+
|
6 |
+
# C extensions
|
7 |
+
*.so
|
8 |
+
|
9 |
+
# Distribution / packaging
|
10 |
+
.Python
|
11 |
+
build/
|
12 |
+
develop-eggs/
|
13 |
+
dist/
|
14 |
+
downloads/
|
15 |
+
eggs/
|
16 |
+
.eggs/
|
17 |
+
lib/
|
18 |
+
lib64/
|
19 |
+
parts/
|
20 |
+
sdist/
|
21 |
+
var/
|
22 |
+
wheels/
|
23 |
+
share/python-wheels/
|
24 |
+
*.egg-info/
|
25 |
+
.installed.cfg
|
26 |
+
*.egg
|
27 |
+
MANIFEST
|
28 |
+
|
29 |
+
# PyInstaller
|
30 |
+
# Usually these files are written by a python script from a template
|
31 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
32 |
+
*.manifest
|
33 |
+
*.spec
|
34 |
+
|
35 |
+
# Installer logs
|
36 |
+
pip-log.txt
|
37 |
+
pip-delete-this-directory.txt
|
38 |
+
|
39 |
+
# Unit test / coverage reports
|
40 |
+
htmlcov/
|
41 |
+
.tox/
|
42 |
+
.nox/
|
43 |
+
.coverage
|
44 |
+
.coverage.*
|
45 |
+
.cache
|
46 |
+
nosetests.xml
|
47 |
+
coverage.xml
|
48 |
+
*.cover
|
49 |
+
*.py,cover
|
50 |
+
.hypothesis/
|
51 |
+
.pytest_cache/
|
52 |
+
cover/
|
53 |
+
|
54 |
+
# Translations
|
55 |
+
*.mo
|
56 |
+
*.pot
|
57 |
+
|
58 |
+
# Django stuff:
|
59 |
+
*.log
|
60 |
+
local_settings.py
|
61 |
+
db.sqlite3
|
62 |
+
db.sqlite3-journal
|
63 |
+
|
64 |
+
# Flask stuff:
|
65 |
+
instance/
|
66 |
+
.webassets-cache
|
67 |
+
|
68 |
+
# Scrapy stuff:
|
69 |
+
.scrapy
|
70 |
+
|
71 |
+
# Sphinx documentation
|
72 |
+
docs/_build/
|
73 |
+
|
74 |
+
# PyBuilder
|
75 |
+
.pybuilder/
|
76 |
+
target/
|
77 |
+
|
78 |
+
# Jupyter Notebook
|
79 |
+
.ipynb_checkpoints
|
80 |
+
|
81 |
+
# IPython
|
82 |
+
profile_default/
|
83 |
+
ipython_config.py
|
84 |
+
|
85 |
+
# pyenv
|
86 |
+
# For a library or package, you might want to ignore these files since the code is
|
87 |
+
# intended to run in multiple environments; otherwise, check them in:
|
88 |
+
# .python-version
|
89 |
+
|
90 |
+
# pipenv
|
91 |
+
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
92 |
+
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
93 |
+
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
94 |
+
# install all needed dependencies.
|
95 |
+
#Pipfile.lock
|
96 |
+
|
97 |
+
# UV
|
98 |
+
# Similar to Pipfile.lock, it is generally recommended to include uv.lock in version control.
|
99 |
+
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
100 |
+
# commonly ignored for libraries.
|
101 |
+
#uv.lock
|
102 |
+
|
103 |
+
# poetry
|
104 |
+
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
|
105 |
+
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
106 |
+
# commonly ignored for libraries.
|
107 |
+
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
|
108 |
+
#poetry.lock
|
109 |
+
|
110 |
+
# pdm
|
111 |
+
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
|
112 |
+
#pdm.lock
|
113 |
+
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
|
114 |
+
# in version control.
|
115 |
+
# https://pdm.fming.dev/latest/usage/project/#working-with-version-control
|
116 |
+
.pdm.toml
|
117 |
+
.pdm-python
|
118 |
+
.pdm-build/
|
119 |
+
|
120 |
+
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
|
121 |
+
__pypackages__/
|
122 |
+
|
123 |
+
# Celery stuff
|
124 |
+
celerybeat-schedule
|
125 |
+
celerybeat.pid
|
126 |
+
|
127 |
+
# SageMath parsed files
|
128 |
+
*.sage.py
|
129 |
+
|
130 |
+
# Environments
|
131 |
+
.env
|
132 |
+
.venv
|
133 |
+
env/
|
134 |
+
venv/
|
135 |
+
ENV/
|
136 |
+
env.bak/
|
137 |
+
venv.bak/
|
138 |
+
|
139 |
+
# Spyder project settings
|
140 |
+
.spyderproject
|
141 |
+
.spyproject
|
142 |
+
|
143 |
+
# Rope project settings
|
144 |
+
.ropeproject
|
145 |
+
|
146 |
+
# mkdocs documentation
|
147 |
+
/site
|
148 |
+
|
149 |
+
# mypy
|
150 |
+
.mypy_cache/
|
151 |
+
.dmypy.json
|
152 |
+
dmypy.json
|
153 |
+
|
154 |
+
# Pyre type checker
|
155 |
+
.pyre/
|
156 |
+
|
157 |
+
# pytype static type analyzer
|
158 |
+
.pytype/
|
159 |
+
|
160 |
+
# Cython debug symbols
|
161 |
+
cython_debug/
|
162 |
+
|
163 |
+
# PyCharm
|
164 |
+
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
|
165 |
+
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
166 |
+
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
167 |
+
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
168 |
+
#.idea/
|
169 |
+
|
170 |
+
# Abstra
|
171 |
+
# Abstra is an AI-powered process automation framework.
|
172 |
+
# Ignore directories containing user credentials, local state, and settings.
|
173 |
+
# Learn more at https://abstra.io/docs
|
174 |
+
.abstra/
|
175 |
+
|
176 |
+
# Visual Studio Code
|
177 |
+
# Visual Studio Code specific template is maintained in a separate VisualStudioCode.gitignore
|
178 |
+
# that can be found at https://github.com/github/gitignore/blob/main/Global/VisualStudioCode.gitignore
|
179 |
+
# and can be added to the global gitignore or merged into this file. However, if you prefer,
|
180 |
+
# you could uncomment the following to ignore the enitre vscode folder
|
181 |
+
# .vscode/
|
182 |
+
|
183 |
+
# Ruff stuff:
|
184 |
+
.ruff_cache/
|
185 |
+
|
186 |
+
# PyPI configuration file
|
187 |
+
.pypirc
|
188 |
+
|
189 |
+
# Cursor
|
190 |
+
# Cursor is an AI-powered code editor. `.cursorignore` specifies files/directories to
|
191 |
+
# exclude from AI features like autocomplete and code analysis. Recommended for sensitive data
|
192 |
+
# refer to https://docs.cursor.com/context/ignore-files
|
193 |
+
.cursorignore
|
194 |
+
.cursorindexingignore
|
README.md
CHANGED
@@ -1,12 +1,20 @@
|
|
1 |
---
|
2 |
-
title: Ml Research
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
sdk_version: 5.33.1
|
8 |
app_file: app.py
|
|
|
9 |
pinned: false
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
---
|
11 |
|
12 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
1 |
---
|
2 |
+
title: Ml Research Assistant And Tutor
|
3 |
+
emoji: 👁
|
4 |
+
colorFrom: blue
|
5 |
+
colorTo: purple
|
6 |
sdk: gradio
|
7 |
sdk_version: 5.33.1
|
8 |
app_file: app.py
|
9 |
+
tags: [agent-demo-track]
|
10 |
pinned: false
|
11 |
+
license: mit
|
12 |
+
short_description: Agentic system for ML research and tutoring
|
13 |
+
python_version: 3.11.6
|
14 |
+
preload_from_hub:
|
15 |
+
- Shamik/arxiv_cs_2020_07_2025 arxiv_docs.db
|
16 |
+
|
17 |
---
|
18 |
|
19 |
+
Check out the configuration reference at <https://huggingface.co/docs/hub/spaces-config-reference>
|
20 |
+
---
|
app.py
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import asyncio
|
2 |
+
|
3 |
+
import gradio as gr
|
4 |
+
import nest_asyncio
|
5 |
+
from huggingface_hub import login
|
6 |
+
|
7 |
+
from src.agent_hackathon.consts import PROJECT_ROOT_DIR
|
8 |
+
from src.agent_hackathon.logger import get_logger
|
9 |
+
from src.agent_hackathon.multiagent import MultiAgentWorkflow
|
10 |
+
|
11 |
+
nest_asyncio.apply()
|
12 |
+
|
13 |
+
logger = get_logger(log_name="multiagent", log_dir=PROJECT_ROOT_DIR / "logs")
|
14 |
+
|
15 |
+
PRIMARY_HEADING = """# ML Topics Deep Research"""
|
16 |
+
SECONDARY_HEADING = """### This multi agent framework queries a DB containing arxiv ML research papers from Jan 2020 - Jun 6th 2025 for select categories, and finds events/conferences related to the user's query.
|
17 |
+
|
18 |
+
For more details on the filtered arxiv ds refer [here](https://huggingface.co/datasets/Shamik/arxiv_cs_2020_07_2025)
|
19 |
+
"""
|
20 |
+
workflow = MultiAgentWorkflow()
|
21 |
+
|
22 |
+
_login_done = False
|
23 |
+
|
24 |
+
|
25 |
+
def run(
|
26 |
+
query: str, api_key: str, chat_history: list[dict[str, str | None]]
|
27 |
+
) -> tuple[str,list[dict[str, str | None]]] | None:
|
28 |
+
global _login_done
|
29 |
+
if not api_key or not api_key.startswith("hf"):
|
30 |
+
raise ValueError("Incorrect HuggingFace Inference API Key")
|
31 |
+
if not _login_done:
|
32 |
+
login(token=api_key)
|
33 |
+
_login_done = True
|
34 |
+
try:
|
35 |
+
result = asyncio.run(workflow.run(user_query=query))
|
36 |
+
chat_history.append({"role": "user", "content": query})
|
37 |
+
chat_history.append({"role": "assistant", "content": result})
|
38 |
+
return "", chat_history
|
39 |
+
except Exception as err:
|
40 |
+
logger.error(f"Error during workflow execution: {err}")
|
41 |
+
return None
|
42 |
+
|
43 |
+
|
44 |
+
with gr.Blocks(fill_height=True) as demo:
|
45 |
+
gr.Markdown(value=PRIMARY_HEADING)
|
46 |
+
gr.Markdown(value=SECONDARY_HEADING)
|
47 |
+
gr.Markdown(
|
48 |
+
value="""<span style="color:red"> Please use a 🤗 Inference API Key </span>"""
|
49 |
+
)
|
50 |
+
api_key = gr.Textbox(
|
51 |
+
placeholder="Enter your HuggingFace Inference API KEY HERE",
|
52 |
+
label="🤗 Inference API Key",
|
53 |
+
show_label=True,
|
54 |
+
type="password",
|
55 |
+
)
|
56 |
+
chatbot = gr.Chatbot(
|
57 |
+
type="messages", label="DeepResearch", show_label=True, height=500,
|
58 |
+
show_copy_all_button=True, show_copy_button=True
|
59 |
+
)
|
60 |
+
msg = gr.Textbox(
|
61 |
+
placeholder="Type your message here and press enter...",
|
62 |
+
show_label=True,
|
63 |
+
label="Input",
|
64 |
+
submit_btn=True,
|
65 |
+
stop_btn=True,
|
66 |
+
)
|
67 |
+
clear = gr.ClearButton(components=[msg, chatbot])
|
68 |
+
msg.submit(fn=run, inputs=[msg, api_key, chatbot], outputs=[msg, chatbot])
|
69 |
+
|
70 |
+
demo.queue(max_size=1).launch(share=False)
|
71 |
+
|
72 |
+
# if __name__ == "__main__":
|
73 |
+
# demo.queue(max_size=1).launch(share=False)
|
74 |
+
|
75 |
+
|
76 |
+
# example queries
|
77 |
+
# tell me about reinforcement learning in robotics
|
78 |
+
# give me event details on reinforcement learning & robotics
|
requirements.txt
ADDED
@@ -0,0 +1,587 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This file was autogenerated by uv via the following command:
|
2 |
+
# uv pip compile pyproject.toml -o requirements.txt
|
3 |
+
accelerate==1.7.0
|
4 |
+
# via
|
5 |
+
# flagembedding
|
6 |
+
# peft
|
7 |
+
# transformers
|
8 |
+
aiofiles==24.1.0
|
9 |
+
# via gradio
|
10 |
+
aiohappyeyeballs==2.6.1
|
11 |
+
# via aiohttp
|
12 |
+
aiohttp==3.12.11
|
13 |
+
# via
|
14 |
+
# fsspec
|
15 |
+
# huggingface-hub
|
16 |
+
# llama-index-core
|
17 |
+
aiosignal==1.3.2
|
18 |
+
# via aiohttp
|
19 |
+
aiosqlite==0.21.0
|
20 |
+
# via llama-index-core
|
21 |
+
annotated-types==0.7.0
|
22 |
+
# via pydantic
|
23 |
+
anyio==4.9.0
|
24 |
+
# via
|
25 |
+
# gradio
|
26 |
+
# httpx
|
27 |
+
# openai
|
28 |
+
# starlette
|
29 |
+
arxiv==2.2.0
|
30 |
+
# via agent-hackathon (pyproject.toml)
|
31 |
+
attrs==25.3.0
|
32 |
+
# via aiohttp
|
33 |
+
banks==2.1.2
|
34 |
+
# via llama-index-core
|
35 |
+
beautifulsoup4==4.13.4
|
36 |
+
# via
|
37 |
+
# ir-datasets
|
38 |
+
# llama-index-readers-file
|
39 |
+
cbor==1.0.0
|
40 |
+
# via trec-car-tools
|
41 |
+
certifi==2025.4.26
|
42 |
+
# via
|
43 |
+
# httpcore
|
44 |
+
# httpx
|
45 |
+
# llama-cloud
|
46 |
+
# requests
|
47 |
+
charset-normalizer==3.4.2
|
48 |
+
# via requests
|
49 |
+
click==8.2.1
|
50 |
+
# via
|
51 |
+
# duckduckgo-search
|
52 |
+
# llama-cloud-services
|
53 |
+
# nltk
|
54 |
+
# typer
|
55 |
+
# uvicorn
|
56 |
+
colorama==0.4.6
|
57 |
+
# via griffe
|
58 |
+
dataclasses-json==0.6.7
|
59 |
+
# via llama-index-core
|
60 |
+
datasets==3.6.0
|
61 |
+
# via flagembedding
|
62 |
+
deprecated==1.2.18
|
63 |
+
# via
|
64 |
+
# banks
|
65 |
+
# llama-index-core
|
66 |
+
dill==0.3.8
|
67 |
+
# via
|
68 |
+
# datasets
|
69 |
+
# multiprocess
|
70 |
+
dirtyjson==1.0.8
|
71 |
+
# via llama-index-core
|
72 |
+
distro==1.9.0
|
73 |
+
# via openai
|
74 |
+
duckduckgo-search==6.4.2
|
75 |
+
# via llama-index-tools-duckduckgo
|
76 |
+
fastapi==0.115.12
|
77 |
+
# via gradio
|
78 |
+
feedparser==6.0.11
|
79 |
+
# via arxiv
|
80 |
+
ffmpy==0.6.0
|
81 |
+
# via gradio
|
82 |
+
filelock==3.18.0
|
83 |
+
# via
|
84 |
+
# datasets
|
85 |
+
# huggingface-hub
|
86 |
+
# torch
|
87 |
+
# transformers
|
88 |
+
filetype==1.2.0
|
89 |
+
# via llama-index-core
|
90 |
+
flagembedding==1.3.5
|
91 |
+
# via agent-hackathon (pyproject.toml)
|
92 |
+
frozenlist==1.6.2
|
93 |
+
# via
|
94 |
+
# aiohttp
|
95 |
+
# aiosignal
|
96 |
+
fsspec==2025.3.0
|
97 |
+
# via
|
98 |
+
# datasets
|
99 |
+
# gradio-client
|
100 |
+
# huggingface-hub
|
101 |
+
# llama-index-core
|
102 |
+
# torch
|
103 |
+
gradio==5.33.1
|
104 |
+
# via agent-hackathon (pyproject.toml)
|
105 |
+
gradio-client==1.10.3
|
106 |
+
# via gradio
|
107 |
+
greenlet==3.2.3
|
108 |
+
# via sqlalchemy
|
109 |
+
griffe==1.7.3
|
110 |
+
# via banks
|
111 |
+
groovy==0.1.2
|
112 |
+
# via gradio
|
113 |
+
grpcio==1.67.1
|
114 |
+
# via pymilvus
|
115 |
+
h11==0.16.0
|
116 |
+
# via
|
117 |
+
# httpcore
|
118 |
+
# uvicorn
|
119 |
+
hf-xet==1.1.3
|
120 |
+
# via huggingface-hub
|
121 |
+
html2text==2025.4.15
|
122 |
+
# via llama-hub
|
123 |
+
httpcore==1.0.9
|
124 |
+
# via httpx
|
125 |
+
httpx==0.28.1
|
126 |
+
# via
|
127 |
+
# agent-hackathon (pyproject.toml)
|
128 |
+
# gradio
|
129 |
+
# gradio-client
|
130 |
+
# llama-cloud
|
131 |
+
# llama-index-core
|
132 |
+
# openai
|
133 |
+
# safehttpx
|
134 |
+
huggingface-hub==0.32.4
|
135 |
+
# via
|
136 |
+
# agent-hackathon (pyproject.toml)
|
137 |
+
# accelerate
|
138 |
+
# datasets
|
139 |
+
# gradio
|
140 |
+
# gradio-client
|
141 |
+
# llama-index-embeddings-huggingface
|
142 |
+
# llama-index-embeddings-huggingface-api
|
143 |
+
# llama-index-llms-huggingface-api
|
144 |
+
# llama-index-utils-huggingface
|
145 |
+
# peft
|
146 |
+
# sentence-transformers
|
147 |
+
# smolagents
|
148 |
+
# tokenizers
|
149 |
+
# transformers
|
150 |
+
idna==3.10
|
151 |
+
# via
|
152 |
+
# anyio
|
153 |
+
# httpx
|
154 |
+
# requests
|
155 |
+
# yarl
|
156 |
+
ijson==3.4.0
|
157 |
+
# via ir-datasets
|
158 |
+
inquirerpy==0.3.4
|
159 |
+
# via huggingface-hub
|
160 |
+
inscriptis==2.6.0
|
161 |
+
# via ir-datasets
|
162 |
+
ir-datasets==0.5.10
|
163 |
+
# via flagembedding
|
164 |
+
jinja2==3.1.6
|
165 |
+
# via
|
166 |
+
# banks
|
167 |
+
# gradio
|
168 |
+
# smolagents
|
169 |
+
# torch
|
170 |
+
jiter==0.10.0
|
171 |
+
# via openai
|
172 |
+
joblib==1.5.1
|
173 |
+
# via
|
174 |
+
# nltk
|
175 |
+
# scikit-learn
|
176 |
+
llama-cloud==0.1.23
|
177 |
+
# via
|
178 |
+
# llama-cloud-services
|
179 |
+
# llama-index-indices-managed-llama-cloud
|
180 |
+
llama-cloud-services==0.6.30
|
181 |
+
# via llama-parse
|
182 |
+
llama-hub==0.0.79.post1
|
183 |
+
# via agent-hackathon (pyproject.toml)
|
184 |
+
llama-index==0.12.41
|
185 |
+
# via llama-hub
|
186 |
+
llama-index-agent-openai==0.4.9
|
187 |
+
# via
|
188 |
+
# llama-index
|
189 |
+
# llama-index-program-openai
|
190 |
+
llama-index-cli==0.4.3
|
191 |
+
# via llama-index
|
192 |
+
llama-index-core==0.12.41
|
193 |
+
# via
|
194 |
+
# llama-cloud-services
|
195 |
+
# llama-index
|
196 |
+
# llama-index-agent-openai
|
197 |
+
# llama-index-cli
|
198 |
+
# llama-index-embeddings-huggingface
|
199 |
+
# llama-index-embeddings-huggingface-api
|
200 |
+
# llama-index-embeddings-openai
|
201 |
+
# llama-index-indices-managed-llama-cloud
|
202 |
+
# llama-index-llms-huggingface
|
203 |
+
# llama-index-llms-huggingface-api
|
204 |
+
# llama-index-llms-nebius
|
205 |
+
# llama-index-llms-openai
|
206 |
+
# llama-index-llms-openai-like
|
207 |
+
# llama-index-multi-modal-llms-openai
|
208 |
+
# llama-index-program-openai
|
209 |
+
# llama-index-question-gen-openai
|
210 |
+
# llama-index-readers-file
|
211 |
+
# llama-index-readers-llama-parse
|
212 |
+
# llama-index-tools-duckduckgo
|
213 |
+
# llama-index-utils-huggingface
|
214 |
+
# llama-index-vector-stores-milvus
|
215 |
+
llama-index-embeddings-huggingface==0.5.4
|
216 |
+
# via agent-hackathon (pyproject.toml)
|
217 |
+
llama-index-embeddings-huggingface-api==0.3.1
|
218 |
+
# via agent-hackathon (pyproject.toml)
|
219 |
+
llama-index-embeddings-openai==0.3.1
|
220 |
+
# via
|
221 |
+
# llama-index
|
222 |
+
# llama-index-cli
|
223 |
+
llama-index-indices-managed-llama-cloud==0.7.4
|
224 |
+
# via llama-index
|
225 |
+
llama-index-llms-huggingface==0.5.0
|
226 |
+
# via agent-hackathon (pyproject.toml)
|
227 |
+
llama-index-llms-huggingface-api==0.5.0
|
228 |
+
# via agent-hackathon (pyproject.toml)
|
229 |
+
llama-index-llms-nebius==0.1.2
|
230 |
+
# via agent-hackathon (pyproject.toml)
|
231 |
+
llama-index-llms-openai==0.4.4
|
232 |
+
# via
|
233 |
+
# llama-index
|
234 |
+
# llama-index-agent-openai
|
235 |
+
# llama-index-cli
|
236 |
+
# llama-index-llms-openai-like
|
237 |
+
# llama-index-multi-modal-llms-openai
|
238 |
+
# llama-index-program-openai
|
239 |
+
# llama-index-question-gen-openai
|
240 |
+
llama-index-llms-openai-like==0.4.0
|
241 |
+
# via llama-index-llms-nebius
|
242 |
+
llama-index-multi-modal-llms-openai==0.5.1
|
243 |
+
# via llama-index
|
244 |
+
llama-index-program-openai==0.3.2
|
245 |
+
# via
|
246 |
+
# llama-index
|
247 |
+
# llama-index-question-gen-openai
|
248 |
+
llama-index-question-gen-openai==0.3.1
|
249 |
+
# via llama-index
|
250 |
+
llama-index-readers-file==0.4.8
|
251 |
+
# via llama-index
|
252 |
+
llama-index-readers-llama-parse==0.4.0
|
253 |
+
# via llama-index
|
254 |
+
llama-index-tools-duckduckgo==0.3.0
|
255 |
+
# via agent-hackathon (pyproject.toml)
|
256 |
+
llama-index-utils-huggingface==0.3.0
|
257 |
+
# via llama-index-embeddings-huggingface-api
|
258 |
+
llama-index-vector-stores-milvus==0.8.4
|
259 |
+
# via agent-hackathon (pyproject.toml)
|
260 |
+
llama-parse==0.6.30
|
261 |
+
# via llama-index-readers-llama-parse
|
262 |
+
lxml==5.4.0
|
263 |
+
# via
|
264 |
+
# inscriptis
|
265 |
+
# ir-datasets
|
266 |
+
lz4==4.4.4
|
267 |
+
# via ir-datasets
|
268 |
+
markdown-it-py==3.0.0
|
269 |
+
# via rich
|
270 |
+
markupsafe==3.0.2
|
271 |
+
# via
|
272 |
+
# gradio
|
273 |
+
# jinja2
|
274 |
+
marshmallow==3.26.1
|
275 |
+
# via dataclasses-json
|
276 |
+
mdurl==0.1.2
|
277 |
+
# via markdown-it-py
|
278 |
+
milvus-lite==2.4.12
|
279 |
+
# via pymilvus
|
280 |
+
mpmath==1.3.0
|
281 |
+
# via sympy
|
282 |
+
multidict==6.4.4
|
283 |
+
# via
|
284 |
+
# aiohttp
|
285 |
+
# yarl
|
286 |
+
multiprocess==0.70.16
|
287 |
+
# via datasets
|
288 |
+
mypy-extensions==1.1.0
|
289 |
+
# via typing-inspect
|
290 |
+
nest-asyncio==1.6.0
|
291 |
+
# via llama-index-core
|
292 |
+
networkx==3.4.2
|
293 |
+
# via
|
294 |
+
# llama-index-core
|
295 |
+
# torch
|
296 |
+
nltk==3.9.1
|
297 |
+
# via
|
298 |
+
# llama-index
|
299 |
+
# llama-index-core
|
300 |
+
numpy==2.2.6
|
301 |
+
# via
|
302 |
+
# accelerate
|
303 |
+
# datasets
|
304 |
+
# gradio
|
305 |
+
# ir-datasets
|
306 |
+
# llama-index-core
|
307 |
+
# pandas
|
308 |
+
# peft
|
309 |
+
# scikit-learn
|
310 |
+
# scipy
|
311 |
+
# transformers
|
312 |
+
# trec-car-tools
|
313 |
+
openai==1.84.0
|
314 |
+
# via
|
315 |
+
# agent-hackathon (pyproject.toml)
|
316 |
+
# llama-index-agent-openai
|
317 |
+
# llama-index-embeddings-openai
|
318 |
+
# llama-index-llms-openai
|
319 |
+
orjson==3.10.18
|
320 |
+
# via gradio
|
321 |
+
packaging==25.0
|
322 |
+
# via
|
323 |
+
# accelerate
|
324 |
+
# datasets
|
325 |
+
# gradio
|
326 |
+
# gradio-client
|
327 |
+
# huggingface-hub
|
328 |
+
# marshmallow
|
329 |
+
# peft
|
330 |
+
# transformers
|
331 |
+
pandas==2.3.0
|
332 |
+
# via
|
333 |
+
# datasets
|
334 |
+
# gradio
|
335 |
+
# llama-index-readers-file
|
336 |
+
# pymilvus
|
337 |
+
peft==0.15.2
|
338 |
+
# via flagembedding
|
339 |
+
pfzy==0.3.4
|
340 |
+
# via inquirerpy
|
341 |
+
pillow==11.2.1
|
342 |
+
# via
|
343 |
+
# gradio
|
344 |
+
# llama-index-core
|
345 |
+
# sentence-transformers
|
346 |
+
# smolagents
|
347 |
+
pip==25.1.1
|
348 |
+
# via agent-hackathon (pyproject.toml)
|
349 |
+
platformdirs==4.3.8
|
350 |
+
# via
|
351 |
+
# banks
|
352 |
+
# llama-cloud-services
|
353 |
+
primp==0.15.0
|
354 |
+
# via duckduckgo-search
|
355 |
+
prompt-toolkit==3.0.51
|
356 |
+
# via inquirerpy
|
357 |
+
propcache==0.3.1
|
358 |
+
# via
|
359 |
+
# aiohttp
|
360 |
+
# yarl
|
361 |
+
protobuf==6.31.1
|
362 |
+
# via
|
363 |
+
# flagembedding
|
364 |
+
# pymilvus
|
365 |
+
psutil==7.0.0
|
366 |
+
# via
|
367 |
+
# accelerate
|
368 |
+
# llama-hub
|
369 |
+
# peft
|
370 |
+
pyaml==23.12.0
|
371 |
+
# via llama-hub
|
372 |
+
pyarrow==20.0.0
|
373 |
+
# via
|
374 |
+
# datasets
|
375 |
+
# ir-datasets
|
376 |
+
pydantic==2.11.5
|
377 |
+
# via
|
378 |
+
# banks
|
379 |
+
# fastapi
|
380 |
+
# gradio
|
381 |
+
# llama-cloud
|
382 |
+
# llama-cloud-services
|
383 |
+
# llama-index-core
|
384 |
+
# openai
|
385 |
+
pydantic-core==2.33.2
|
386 |
+
# via pydantic
|
387 |
+
pydub==0.25.1
|
388 |
+
# via gradio
|
389 |
+
pygments==2.19.1
|
390 |
+
# via rich
|
391 |
+
pymilvus==2.5.10
|
392 |
+
# via llama-index-vector-stores-milvus
|
393 |
+
pypdf==5.6.0
|
394 |
+
# via llama-index-readers-file
|
395 |
+
pyprojroot==0.3.0
|
396 |
+
# via agent-hackathon (pyproject.toml)
|
397 |
+
python-dateutil==2.9.0.post0
|
398 |
+
# via pandas
|
399 |
+
python-dotenv==1.1.0
|
400 |
+
# via
|
401 |
+
# agent-hackathon (pyproject.toml)
|
402 |
+
# llama-cloud-services
|
403 |
+
# pymilvus
|
404 |
+
# smolagents
|
405 |
+
python-multipart==0.0.20
|
406 |
+
# via gradio
|
407 |
+
pytz==2025.2
|
408 |
+
# via pandas
|
409 |
+
pyyaml==6.0.2
|
410 |
+
# via
|
411 |
+
# accelerate
|
412 |
+
# datasets
|
413 |
+
# gradio
|
414 |
+
# huggingface-hub
|
415 |
+
# ir-datasets
|
416 |
+
# llama-index-core
|
417 |
+
# peft
|
418 |
+
# pyaml
|
419 |
+
# transformers
|
420 |
+
regex==2024.11.6
|
421 |
+
# via
|
422 |
+
# nltk
|
423 |
+
# tiktoken
|
424 |
+
# transformers
|
425 |
+
requests==2.32.3
|
426 |
+
# via
|
427 |
+
# arxiv
|
428 |
+
# datasets
|
429 |
+
# huggingface-hub
|
430 |
+
# inscriptis
|
431 |
+
# ir-datasets
|
432 |
+
# llama-index-core
|
433 |
+
# smolagents
|
434 |
+
# tiktoken
|
435 |
+
# transformers
|
436 |
+
retrying==1.3.4
|
437 |
+
# via llama-hub
|
438 |
+
rich==14.0.0
|
439 |
+
# via
|
440 |
+
# smolagents
|
441 |
+
# typer
|
442 |
+
ruff==0.11.13
|
443 |
+
# via gradio
|
444 |
+
safehttpx==0.1.6
|
445 |
+
# via gradio
|
446 |
+
safetensors==0.5.3
|
447 |
+
# via
|
448 |
+
# accelerate
|
449 |
+
# peft
|
450 |
+
# transformers
|
451 |
+
scikit-learn==1.7.0
|
452 |
+
# via sentence-transformers
|
453 |
+
scipy==1.15.3
|
454 |
+
# via
|
455 |
+
# scikit-learn
|
456 |
+
# sentence-transformers
|
457 |
+
semantic-version==2.10.0
|
458 |
+
# via gradio
|
459 |
+
sentence-transformers==4.1.0
|
460 |
+
# via
|
461 |
+
# flagembedding
|
462 |
+
# llama-index-embeddings-huggingface
|
463 |
+
sentencepiece==0.2.0
|
464 |
+
# via flagembedding
|
465 |
+
setuptools==80.9.0
|
466 |
+
# via pymilvus
|
467 |
+
sgmllib3k==1.0.0
|
468 |
+
# via feedparser
|
469 |
+
shellingham==1.5.4
|
470 |
+
# via typer
|
471 |
+
six==1.17.0
|
472 |
+
# via
|
473 |
+
# python-dateutil
|
474 |
+
# retrying
|
475 |
+
smolagents==1.17.0
|
476 |
+
# via agent-hackathon (pyproject.toml)
|
477 |
+
sniffio==1.3.1
|
478 |
+
# via
|
479 |
+
# anyio
|
480 |
+
# openai
|
481 |
+
soupsieve==2.7
|
482 |
+
# via beautifulsoup4
|
483 |
+
sqlalchemy==2.0.41
|
484 |
+
# via llama-index-core
|
485 |
+
starlette==0.46.2
|
486 |
+
# via
|
487 |
+
# fastapi
|
488 |
+
# gradio
|
489 |
+
striprtf==0.0.26
|
490 |
+
# via llama-index-readers-file
|
491 |
+
sympy==1.13.1
|
492 |
+
# via torch
|
493 |
+
tenacity==9.1.2
|
494 |
+
# via llama-index-core
|
495 |
+
threadpoolctl==3.6.0
|
496 |
+
# via scikit-learn
|
497 |
+
tiktoken==0.9.0
|
498 |
+
# via llama-index-core
|
499 |
+
tokenizers==0.21.1
|
500 |
+
# via transformers
|
501 |
+
tomlkit==0.13.3
|
502 |
+
# via gradio
|
503 |
+
torch==2.6.0
|
504 |
+
# via
|
505 |
+
# accelerate
|
506 |
+
# flagembedding
|
507 |
+
# llama-index-llms-huggingface
|
508 |
+
# peft
|
509 |
+
# sentence-transformers
|
510 |
+
# transformers
|
511 |
+
tqdm==4.67.1
|
512 |
+
# via
|
513 |
+
# datasets
|
514 |
+
# huggingface-hub
|
515 |
+
# ir-datasets
|
516 |
+
# llama-index-core
|
517 |
+
# milvus-lite
|
518 |
+
# nltk
|
519 |
+
# openai
|
520 |
+
# peft
|
521 |
+
# sentence-transformers
|
522 |
+
# transformers
|
523 |
+
transformers==4.52.4
|
524 |
+
# via
|
525 |
+
# flagembedding
|
526 |
+
# llama-index-llms-huggingface
|
527 |
+
# llama-index-llms-openai-like
|
528 |
+
# peft
|
529 |
+
# sentence-transformers
|
530 |
+
trec-car-tools==2.6
|
531 |
+
# via ir-datasets
|
532 |
+
typer==0.16.0
|
533 |
+
# via gradio
|
534 |
+
typing-extensions==4.14.0
|
535 |
+
# via
|
536 |
+
# aiosqlite
|
537 |
+
# anyio
|
538 |
+
# beautifulsoup4
|
539 |
+
# fastapi
|
540 |
+
# gradio
|
541 |
+
# gradio-client
|
542 |
+
# huggingface-hub
|
543 |
+
# llama-index-core
|
544 |
+
# openai
|
545 |
+
# pydantic
|
546 |
+
# pydantic-core
|
547 |
+
# pyprojroot
|
548 |
+
# sentence-transformers
|
549 |
+
# sqlalchemy
|
550 |
+
# torch
|
551 |
+
# typer
|
552 |
+
# typing-inspect
|
553 |
+
# typing-inspection
|
554 |
+
typing-inspect==0.9.0
|
555 |
+
# via
|
556 |
+
# dataclasses-json
|
557 |
+
# llama-index-core
|
558 |
+
typing-inspection==0.4.1
|
559 |
+
# via pydantic
|
560 |
+
tzdata==2025.2
|
561 |
+
# via pandas
|
562 |
+
ujson==5.10.0
|
563 |
+
# via pymilvus
|
564 |
+
unlzw3==0.2.3
|
565 |
+
# via ir-datasets
|
566 |
+
urllib3==2.4.0
|
567 |
+
# via requests
|
568 |
+
uvicorn==0.34.3
|
569 |
+
# via gradio
|
570 |
+
warc3-wet==0.2.5
|
571 |
+
# via ir-datasets
|
572 |
+
warc3-wet-clueweb09==0.2.5
|
573 |
+
# via ir-datasets
|
574 |
+
wcwidth==0.2.13
|
575 |
+
# via prompt-toolkit
|
576 |
+
websockets==15.0.1
|
577 |
+
# via gradio-client
|
578 |
+
wrapt==1.17.2
|
579 |
+
# via
|
580 |
+
# deprecated
|
581 |
+
# llama-index-core
|
582 |
+
xxhash==3.5.0
|
583 |
+
# via datasets
|
584 |
+
yarl==1.20.0
|
585 |
+
# via aiohttp
|
586 |
+
zlib-state==0.1.9
|
587 |
+
# via ir-datasets
|
src/agent_hackathon/__init__.py
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
def hello() -> str:
|
2 |
+
return "Hello from agent-hackathon!"
|
src/agent_hackathon/consts.py
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
from pyprojroot import find_root, has_file
|
2 |
+
|
3 |
+
PROJECT_ROOT_DIR = find_root(criterion=has_file(file="README.md"))
|
src/agent_hackathon/create_vector_db.py
ADDED
@@ -0,0 +1,149 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
from copy import deepcopy
|
3 |
+
|
4 |
+
from dotenv import find_dotenv, load_dotenv
|
5 |
+
from llama_index.core import StorageContext, VectorStoreIndex
|
6 |
+
from llama_index.core.node_parser import SentenceSplitter
|
7 |
+
from llama_index.core.schema import Document
|
8 |
+
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
9 |
+
from llama_index.vector_stores.milvus import MilvusVectorStore
|
10 |
+
from llama_index.vector_stores.milvus.utils import BGEM3SparseEmbeddingFunction
|
11 |
+
|
12 |
+
from src.agent_hackathon.consts import PROJECT_ROOT_DIR
|
13 |
+
from src.agent_hackathon.logger import get_logger
|
14 |
+
|
15 |
+
logger = get_logger(log_name="create_vector_db", log_dir=PROJECT_ROOT_DIR / "logs")
|
16 |
+
|
17 |
+
|
18 |
+
class VectorDBCreator:
|
19 |
+
"""Handles creation of a Milvus vector database from arXiv data."""
|
20 |
+
|
21 |
+
def __init__(
|
22 |
+
self,
|
23 |
+
data_path: str,
|
24 |
+
db_uri: str,
|
25 |
+
embedding_model: str = "Qwen/Qwen3-Embedding-0.6B",
|
26 |
+
chunk_size: int = 20_000,
|
27 |
+
chunk_overlap: int = 0,
|
28 |
+
vector_dim: int = 1024,
|
29 |
+
insert_batch_size: int = 8192,
|
30 |
+
) -> None:
|
31 |
+
"""
|
32 |
+
Initialize the VectorDBCreator.
|
33 |
+
|
34 |
+
Args:
|
35 |
+
data_path: Path to the JSON data file.
|
36 |
+
db_uri: URI for the Milvus database.
|
37 |
+
embedding_model: Name of the embedding model.
|
38 |
+
chunk_size: Size of text chunks for splitting.
|
39 |
+
chunk_overlap: Overlap between text chunks.
|
40 |
+
vector_dim: Dimension of the embedding vectors.
|
41 |
+
insert_batch_size: Batch size for insertion.
|
42 |
+
"""
|
43 |
+
self.data_path = data_path
|
44 |
+
self.db_uri = db_uri
|
45 |
+
self.embedding_model = embedding_model
|
46 |
+
self.chunk_size = chunk_size
|
47 |
+
self.chunk_overlap = chunk_overlap
|
48 |
+
self.vector_dim = vector_dim
|
49 |
+
self.insert_batch_size = insert_batch_size
|
50 |
+
self.embed_model = HuggingFaceEmbedding(
|
51 |
+
model_name=self.embedding_model, device="cpu"
|
52 |
+
)
|
53 |
+
self.sent_splitter = SentenceSplitter(
|
54 |
+
chunk_size=self.chunk_size, chunk_overlap=self.chunk_overlap
|
55 |
+
)
|
56 |
+
logger.info("VectorDBCreator initialized.")
|
57 |
+
|
58 |
+
def load_data(self) -> list[dict]:
|
59 |
+
"""
|
60 |
+
Load and return data from the JSON file.
|
61 |
+
|
62 |
+
Returns:
|
63 |
+
List of dictionaries containing arXiv data.
|
64 |
+
"""
|
65 |
+
logger.info(f"Loading data from {self.data_path}")
|
66 |
+
with open(file=self.data_path) as f:
|
67 |
+
data = json.load(fp=f)
|
68 |
+
logger.info("Data loaded successfully.")
|
69 |
+
return deepcopy(x=data)
|
70 |
+
|
71 |
+
def prepare_documents(self, data: list[dict]) -> list[Document]:
|
72 |
+
"""
|
73 |
+
Convert raw data into a list of Document objects.
|
74 |
+
|
75 |
+
Args:
|
76 |
+
data: List of dictionaries with arXiv data.
|
77 |
+
|
78 |
+
Returns:
|
79 |
+
List of Document objects.
|
80 |
+
"""
|
81 |
+
logger.info("Preparing documents from data.")
|
82 |
+
docs = [Document(text=d.pop("abstract"), metadata=d) for d in data]
|
83 |
+
logger.info(f"Prepared {len(docs)} documents.")
|
84 |
+
return docs
|
85 |
+
|
86 |
+
def create_vector_store(self) -> MilvusVectorStore:
|
87 |
+
"""
|
88 |
+
Create and return a MilvusVectorStore instance.
|
89 |
+
|
90 |
+
Returns:
|
91 |
+
Configured MilvusVectorStore.
|
92 |
+
"""
|
93 |
+
logger.info(f"Creating MilvusVectorStore at {self.db_uri}")
|
94 |
+
store = MilvusVectorStore(
|
95 |
+
uri=self.db_uri,
|
96 |
+
dim=self.vector_dim,
|
97 |
+
enable_sparse=True,
|
98 |
+
sparse_embedding_function=BGEM3SparseEmbeddingFunction(),
|
99 |
+
)
|
100 |
+
logger.info("MilvusVectorStore created.")
|
101 |
+
return store
|
102 |
+
|
103 |
+
def build_index(
|
104 |
+
self, docs_list: list[Document], vector_store: MilvusVectorStore
|
105 |
+
) -> VectorStoreIndex:
|
106 |
+
"""
|
107 |
+
Build and return a VectorStoreIndex from documents.
|
108 |
+
|
109 |
+
Args:
|
110 |
+
docs_list: List of Document objects.
|
111 |
+
vector_store: MilvusVectorStore instance.
|
112 |
+
|
113 |
+
Returns:
|
114 |
+
VectorStoreIndex object.
|
115 |
+
"""
|
116 |
+
logger.info("Building VectorStoreIndex.")
|
117 |
+
storage_context = StorageContext.from_defaults(vector_store=vector_store)
|
118 |
+
index = VectorStoreIndex.from_documents(
|
119 |
+
documents=docs_list,
|
120 |
+
storage_context=storage_context,
|
121 |
+
embed_model=self.embed_model,
|
122 |
+
transformations=[self.sent_splitter],
|
123 |
+
show_progress=True,
|
124 |
+
insert_batch_size=self.insert_batch_size,
|
125 |
+
)
|
126 |
+
logger.info("VectorStoreIndex built.")
|
127 |
+
return index
|
128 |
+
|
129 |
+
def run(self) -> None:
|
130 |
+
"""
|
131 |
+
Execute the full pipeline: load data, prepare documents, create vector store, and build index.
|
132 |
+
"""
|
133 |
+
logger.info("Running full vector DB creation pipeline.")
|
134 |
+
data = self.load_data()
|
135 |
+
docs_list = self.prepare_documents(data=data)
|
136 |
+
vector_store = self.create_vector_store()
|
137 |
+
self.build_index(docs_list=docs_list, vector_store=vector_store)
|
138 |
+
logger.info("Pipeline finished.")
|
139 |
+
|
140 |
+
|
141 |
+
# if __name__ == "__main__":
|
142 |
+
# logger.info("Script started.")
|
143 |
+
# # Optionally load environment variables if needed
|
144 |
+
# _ = load_dotenv(dotenv_path=find_dotenv(raise_error_if_not_found=True))
|
145 |
+
# creator = VectorDBCreator(
|
146 |
+
# data_path=f"{PROJECT_ROOT_DIR}/data/cs_data_arxiv.json", db_uri="arxiv_docs.db"
|
147 |
+
# )
|
148 |
+
# creator.run()
|
149 |
+
# logger.info("Script finished.")
|
src/agent_hackathon/generate_arxiv_responses.py
ADDED
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
from pathlib import Path
|
3 |
+
from typing import Any
|
4 |
+
|
5 |
+
from huggingface_hub import InferenceClient
|
6 |
+
|
7 |
+
from src.agent_hackathon.consts import PROJECT_ROOT_DIR
|
8 |
+
from src.agent_hackathon.create_vector_db import VectorDBCreator
|
9 |
+
from src.agent_hackathon.logger import get_logger
|
10 |
+
from src.agent_hackathon.query_vector_db import RetrieverEngineBuilder
|
11 |
+
|
12 |
+
logger = get_logger(log_name="arxiv_responses", log_dir=PROJECT_ROOT_DIR / "logs")
|
13 |
+
|
14 |
+
|
15 |
+
class ArxivResponseGenerator:
|
16 |
+
"""
|
17 |
+
Handles retrieval and formatting of arXiv papers using a vector database and LLM.
|
18 |
+
"""
|
19 |
+
|
20 |
+
def __init__(self, vector_store_path: Path) -> None:
|
21 |
+
"""Initializes the ArxivResponseGenerator."""
|
22 |
+
self.vector_store_path = vector_store_path
|
23 |
+
self.client = self._initialise_client()
|
24 |
+
self.retriever = self._initialise_retriever()
|
25 |
+
logger.info("ArxivResponseGenerator initialized.")
|
26 |
+
|
27 |
+
def _initialise_retriever(self) -> Any:
|
28 |
+
"""
|
29 |
+
Initializes and returns a retriever engine.
|
30 |
+
|
31 |
+
Returns:
|
32 |
+
Any: Retriever engine object.
|
33 |
+
"""
|
34 |
+
logger.info("Initializing retriever engine.")
|
35 |
+
vector_db_creator = VectorDBCreator(
|
36 |
+
data_path=..., db_uri=self.vector_store_path.as_posix()
|
37 |
+
)
|
38 |
+
vector_store = vector_db_creator.create_vector_store()
|
39 |
+
retriever_class = RetrieverEngineBuilder(
|
40 |
+
vector_store=vector_store,
|
41 |
+
)
|
42 |
+
retriever = retriever_class.build_retriever_engine()
|
43 |
+
logger.info("Retriever engine initialized.")
|
44 |
+
return retriever
|
45 |
+
|
46 |
+
def _initialise_client(self) -> InferenceClient:
|
47 |
+
"""
|
48 |
+
Initializes and returns an InferenceClient.
|
49 |
+
|
50 |
+
Returns:
|
51 |
+
InferenceClient: HuggingFace InferenceClient instance.
|
52 |
+
"""
|
53 |
+
logger.info("Initializing InferenceClient.")
|
54 |
+
client = InferenceClient(
|
55 |
+
provider="auto",
|
56 |
+
# bill_to="VitalNest",
|
57 |
+
)
|
58 |
+
logger.info("InferenceClient initialized.")
|
59 |
+
return client
|
60 |
+
|
61 |
+
def retrieve_arxiv_papers(self, query: str) -> str:
|
62 |
+
"""
|
63 |
+
Retrieves and formats arXiv papers for a given query.
|
64 |
+
|
65 |
+
Args:
|
66 |
+
query (str): The search query.
|
67 |
+
|
68 |
+
Returns:
|
69 |
+
str: Formatted response from the LLM.
|
70 |
+
"""
|
71 |
+
logger.info(f"Retrieving arXiv papers for query: {query}")
|
72 |
+
|
73 |
+
try:
|
74 |
+
retrieved_content = json.dumps(
|
75 |
+
obj=[(i.get_content(), i.metadata) for i in self.retriever.retrieve(query)]
|
76 |
+
)
|
77 |
+
logger.info("Retrieved content from vector DB.")
|
78 |
+
except Exception as err:
|
79 |
+
logger.error(f"Error retrieving from vector DB: {err}")
|
80 |
+
raise
|
81 |
+
completion = self.client.chat.completions.create(
|
82 |
+
model="meta-llama/Llama-4-Scout-17B-16E-Instruct",
|
83 |
+
temperature=0.1,
|
84 |
+
messages=[
|
85 |
+
{
|
86 |
+
"role": "user",
|
87 |
+
"content": [
|
88 |
+
{
|
89 |
+
"type": "text",
|
90 |
+
"text": f"Format the following output neatly:{retrieved_content}. Return only the output.",
|
91 |
+
},
|
92 |
+
],
|
93 |
+
}
|
94 |
+
],
|
95 |
+
)
|
96 |
+
logger.info("Received completion from LLM.")
|
97 |
+
return completion.choices[0].message.content
|
98 |
+
|
99 |
+
|
100 |
+
# if __name__ == "__main__":
|
101 |
+
# logger.info("Script started.")
|
102 |
+
# generator = ArxivResponseGenerator(
|
103 |
+
# vector_store_path=PROJECT_ROOT_DIR / "db/arxiv_docs.db"
|
104 |
+
# )
|
105 |
+
# query = "deep learning for NLP" # Example query, replace as needed
|
106 |
+
# result = generator.retrieve_arxiv_papers(query=query)
|
107 |
+
# print(result)
|
108 |
+
# logger.info("Script finished.")
|
src/agent_hackathon/logger.py
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
from datetime import datetime
|
3 |
+
from pathlib import Path
|
4 |
+
|
5 |
+
from rich.logging import RichHandler
|
6 |
+
|
7 |
+
|
8 |
+
def get_logger(log_name: str, log_dir: Path) -> logging.Logger:
|
9 |
+
"""
|
10 |
+
Returns a logger with RichHandler and file handler.
|
11 |
+
|
12 |
+
Args:
|
13 |
+
log_name (str): Name prefix for the log file.
|
14 |
+
log_dir (Path): Directory to store log files.
|
15 |
+
|
16 |
+
Returns:
|
17 |
+
logging.Logger: Configured logger instance.
|
18 |
+
"""
|
19 |
+
log_dir.mkdir(parents=True, exist_ok=True)
|
20 |
+
date_str = datetime.now().strftime(format="%m_%d_%Y")
|
21 |
+
log_file = log_dir / f"{log_name}_{date_str}.log"
|
22 |
+
|
23 |
+
logger = logging.getLogger(name=log_name)
|
24 |
+
logger.setLevel(level=logging.INFO)
|
25 |
+
logger.handlers.clear()
|
26 |
+
|
27 |
+
# Rich console handler
|
28 |
+
rich_handler = RichHandler(
|
29 |
+
rich_tracebacks=True, show_time=True, show_level=True, show_path=True
|
30 |
+
)
|
31 |
+
rich_handler.setLevel(level=logging.INFO)
|
32 |
+
|
33 |
+
# File handler
|
34 |
+
file_handler = logging.FileHandler(filename=log_file, encoding="utf-8")
|
35 |
+
file_handler.setLevel(level=logging.INFO)
|
36 |
+
formatter = logging.Formatter(
|
37 |
+
fmt="%(asctime)s | %(levelname)s | %(name)s | %(message)s"
|
38 |
+
)
|
39 |
+
file_handler.setFormatter(formatter)
|
40 |
+
|
41 |
+
logger.addHandler(rich_handler)
|
42 |
+
logger.addHandler(file_handler)
|
43 |
+
logger.propagate = False
|
44 |
+
|
45 |
+
return logger
|
src/agent_hackathon/multiagent.py
ADDED
@@ -0,0 +1,146 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# import asyncio
|
2 |
+
from datetime import date
|
3 |
+
|
4 |
+
import nest_asyncio
|
5 |
+
from llama_index.core.agent.workflow import AgentWorkflow, ReActAgent
|
6 |
+
from llama_index.core.tools import FunctionTool
|
7 |
+
from llama_index.llms.huggingface_api import HuggingFaceInferenceAPI
|
8 |
+
from llama_index.tools.duckduckgo import DuckDuckGoSearchToolSpec
|
9 |
+
|
10 |
+
from src.agent_hackathon.consts import PROJECT_ROOT_DIR
|
11 |
+
|
12 |
+
# from dotenv import find_dotenv, load_dotenv
|
13 |
+
from src.agent_hackathon.generate_arxiv_responses import ArxivResponseGenerator
|
14 |
+
from src.agent_hackathon.logger import get_logger
|
15 |
+
|
16 |
+
nest_asyncio.apply()
|
17 |
+
|
18 |
+
# _ = load_dotenv(dotenv_path=find_dotenv(raise_error_if_not_found=False), override=True)
|
19 |
+
|
20 |
+
logger = get_logger(log_name="multiagent", log_dir=PROJECT_ROOT_DIR / "logs")
|
21 |
+
|
22 |
+
|
23 |
+
class MultiAgentWorkflow:
|
24 |
+
"""Multi-agent workflow for retrieving research papers and related events."""
|
25 |
+
|
26 |
+
def __init__(self) -> None:
|
27 |
+
"""Initialize the workflow with LLM, tools, and generator."""
|
28 |
+
logger.info("Initializing MultiAgentWorkflow.")
|
29 |
+
self.llm = HuggingFaceInferenceAPI(
|
30 |
+
model="meta-llama/Llama-3.3-70B-Instruct",
|
31 |
+
provider="auto",
|
32 |
+
# provider="nebius",
|
33 |
+
temperature=0.1,
|
34 |
+
top_p=0.95,
|
35 |
+
# api_key=os.getenv(key="NEBIUS_API_KEY"),
|
36 |
+
# base_url="https://api.studio.nebius.com/v1/",
|
37 |
+
system_prompt="Don't just plan, but execute the plan until failure.",
|
38 |
+
)
|
39 |
+
self._generator = ArxivResponseGenerator(
|
40 |
+
vector_store_path=PROJECT_ROOT_DIR / "db/arxiv_docs.db"
|
41 |
+
)
|
42 |
+
self._arxiv_rag_tool = FunctionTool.from_defaults(
|
43 |
+
fn=self._arxiv_rag,
|
44 |
+
name="arxiv_rag",
|
45 |
+
description="Retrieves arxiv research papers.",
|
46 |
+
return_direct=False,
|
47 |
+
)
|
48 |
+
self._duckduckgo_search_tool = [
|
49 |
+
tool
|
50 |
+
for tool in DuckDuckGoSearchToolSpec().to_tool_list()
|
51 |
+
if tool.metadata.name == "duckduckgo_full_search"
|
52 |
+
]
|
53 |
+
self._arxiv_agent = ReActAgent(
|
54 |
+
name="arxiv_agent",
|
55 |
+
description="Retrieves information about arxiv research papers",
|
56 |
+
system_prompt="You are arxiv research paper agent, who retrieves information "
|
57 |
+
"about arxiv research papers.",
|
58 |
+
tools=[self._arxiv_rag_tool],
|
59 |
+
llm=self.llm,
|
60 |
+
)
|
61 |
+
self._websearch_agent = ReActAgent(
|
62 |
+
name="web_search",
|
63 |
+
description="Searches the web",
|
64 |
+
system_prompt="You are search engine who searches the web using duckduckgo tool",
|
65 |
+
tools=self._duckduckgo_search_tool,
|
66 |
+
llm=self.llm,
|
67 |
+
)
|
68 |
+
|
69 |
+
self._workflow = AgentWorkflow(
|
70 |
+
agents=[self._arxiv_agent, self._websearch_agent],
|
71 |
+
root_agent="arxiv_agent",
|
72 |
+
timeout=180,
|
73 |
+
)
|
74 |
+
# AgentWorkflow.from_tools_or_functions(
|
75 |
+
# tools_or_functions=self._duckduckgo_search_tool,
|
76 |
+
# llm=self.llm,
|
77 |
+
# system_prompt="You are an expert that "
|
78 |
+
# "searches for any corresponding events related to the "
|
79 |
+
# "user query "
|
80 |
+
# "using the duckduckgo_search_tool and returns the final results." \
|
81 |
+
# "Don't return the steps but execute the necessary tools that you have " \
|
82 |
+
# "access to and return the results.",
|
83 |
+
# timeout=180,
|
84 |
+
# )
|
85 |
+
|
86 |
+
logger.info("MultiAgentWorkflow initialized.")
|
87 |
+
|
88 |
+
def _arxiv_rag(self, query: str) -> str:
|
89 |
+
"""Retrieve research papers from arXiv based on the query.
|
90 |
+
|
91 |
+
Args:
|
92 |
+
query (str): The search query.
|
93 |
+
|
94 |
+
Returns:
|
95 |
+
str: Retrieved research papers as a string.
|
96 |
+
"""
|
97 |
+
return self._generator.retrieve_arxiv_papers(query=query)
|
98 |
+
|
99 |
+
def _clean_response(self, result: str) -> str:
|
100 |
+
"""Removes the think tags.
|
101 |
+
|
102 |
+
Args:
|
103 |
+
result (str): The result with the <think></think> content.
|
104 |
+
|
105 |
+
Returns:
|
106 |
+
str: The result without the <think></think> content.
|
107 |
+
"""
|
108 |
+
if result.find("</think>"):
|
109 |
+
result = result[result.find("</think>") + len("</think>") :]
|
110 |
+
return result
|
111 |
+
|
112 |
+
async def run(self, user_query: str) -> str:
|
113 |
+
"""Run the multi-agent workflow for a given user query.
|
114 |
+
|
115 |
+
Args:
|
116 |
+
user_query (str): The user's search query.
|
117 |
+
|
118 |
+
Returns:
|
119 |
+
str: The output string.
|
120 |
+
"""
|
121 |
+
logger.info("Running multi-agent workflow.")
|
122 |
+
try:
|
123 |
+
user_msg = (
|
124 |
+
f"First, give me arxiv research papers about: {user_query}."
|
125 |
+
f"Then search with web search agent for any events related to : {user_query}.\n"
|
126 |
+
f"The web search results should be relevant to the current year: {date.today().year}."
|
127 |
+
"Return all the content from all the agents."
|
128 |
+
)
|
129 |
+
results = await self._workflow.run(user_msg=user_msg)
|
130 |
+
logger.info("Workflow run completed successfully.")
|
131 |
+
return results
|
132 |
+
except Exception as err:
|
133 |
+
logger.error(f"Workflow run failed: {err}")
|
134 |
+
raise
|
135 |
+
|
136 |
+
|
137 |
+
# if __name__ == "__main__":
|
138 |
+
# USER_QUERY = "i want to learn more about nlp"
|
139 |
+
# workflow = MultiAgentWorkflow()
|
140 |
+
# logger.info("Starting workflow for user query.")
|
141 |
+
# try:
|
142 |
+
# result = asyncio.run(workflow.run(user_query=USER_QUERY))
|
143 |
+
# logger.info("Workflow finished. Output below:")
|
144 |
+
# print(result)
|
145 |
+
# except Exception as err:
|
146 |
+
# logger.error(f"Error during workflow execution: {err}")
|
src/agent_hackathon/py.typed
ADDED
File without changes
|
src/agent_hackathon/query_vector_db.py
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from typing import Any
|
3 |
+
|
4 |
+
from dotenv import find_dotenv, load_dotenv
|
5 |
+
from huggingface_hub import login
|
6 |
+
from llama_index.core import VectorStoreIndex
|
7 |
+
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
8 |
+
from llama_index.vector_stores.milvus import MilvusVectorStore
|
9 |
+
|
10 |
+
from src.agent_hackathon.consts import PROJECT_ROOT_DIR
|
11 |
+
from src.agent_hackathon.logger import get_logger
|
12 |
+
|
13 |
+
logger = get_logger(log_name="query_vector_db", log_dir=PROJECT_ROOT_DIR / "logs")
|
14 |
+
|
15 |
+
|
16 |
+
class RetrieverEngineBuilder:
|
17 |
+
"""
|
18 |
+
Handles the creation of a query engine for a vector database using HuggingFace and LlamaIndex.
|
19 |
+
"""
|
20 |
+
|
21 |
+
def __init__(
|
22 |
+
self,
|
23 |
+
hf_token_env: str = "HF_TOKEN",
|
24 |
+
embedding_model: str = "Qwen/Qwen3-Embedding-0.6B",
|
25 |
+
vector_store: MilvusVectorStore = None,
|
26 |
+
device: str = "cpu",
|
27 |
+
) -> None:
|
28 |
+
"""
|
29 |
+
Initialize the QueryEngineBuilder.
|
30 |
+
|
31 |
+
Args:
|
32 |
+
hf_token_env: Environment variable name for HuggingFace token.
|
33 |
+
embedding_model: Name of the embedding model.
|
34 |
+
vector_store: An instance of MilvusVectorStore.
|
35 |
+
device: Device to run the embedding model on.
|
36 |
+
"""
|
37 |
+
self.hf_token_env = hf_token_env
|
38 |
+
self.embedding_model = embedding_model
|
39 |
+
self.vector_store = vector_store
|
40 |
+
self.device = device
|
41 |
+
|
42 |
+
logger.info("Initializing RetrieverEngineBuilder.")
|
43 |
+
# self._login_huggingface()
|
44 |
+
# self._load_env()
|
45 |
+
|
46 |
+
self.embed_model = HuggingFaceEmbedding(
|
47 |
+
model_name=self.embedding_model, device=self.device
|
48 |
+
)
|
49 |
+
logger.info("RetrieverEngineBuilder initialized.")
|
50 |
+
|
51 |
+
def _login_huggingface(self) -> None:
|
52 |
+
"""Login to HuggingFace using the token from environment variable."""
|
53 |
+
logger.info("Logging in to HuggingFace.")
|
54 |
+
login(token=os.getenv(key=self.hf_token_env))
|
55 |
+
logger.info("Logged in to HuggingFace.")
|
56 |
+
|
57 |
+
def _load_env(self) -> None:
|
58 |
+
"""Load environment variables from .env file."""
|
59 |
+
logger.info("Loading environment variables.")
|
60 |
+
_ = load_dotenv(dotenv_path=find_dotenv(raise_error_if_not_found=False))
|
61 |
+
logger.info("Environment variables loaded.")
|
62 |
+
|
63 |
+
def build_retriever_engine(self) -> Any:
|
64 |
+
"""
|
65 |
+
Build and return the retriever engine.
|
66 |
+
|
67 |
+
Returns:
|
68 |
+
Retriever engine object.
|
69 |
+
"""
|
70 |
+
logger.info("Building retriever engine.")
|
71 |
+
index = VectorStoreIndex.from_vector_store(
|
72 |
+
vector_store=self.vector_store, embed_model=self.embed_model
|
73 |
+
)
|
74 |
+
retriever = index.as_retriever(
|
75 |
+
vector_store_query_mode="hybrid",
|
76 |
+
similarity_top_k=5,
|
77 |
+
)
|
78 |
+
logger.info("Retriever engine built.")
|
79 |
+
return retriever
|