chuckiykyk's picture
Upload 36 files
72f802a verified
"""
Modal Labs GPU Processing
GPU-accelerated sentiment analysis and text processing
"""
import modal
import asyncio
import logging
import os
from typing import List, Dict, Any, Optional
import json
from datetime import datetime
import numpy as np
from dotenv import load_dotenv
# Load environment variables
load_dotenv()
logger = logging.getLogger(__name__)
# Modal app definition
app = modal.App("product-feature-agent")
# Define the Modal image with all required dependencies
image = (
modal.Image.debian_slim()
.pip_install([
"torch>=2.1.0",
"transformers>=4.35.0",
"numpy>=1.24.0",
"scikit-learn>=1.3.0",
"textblob>=0.17.1",
"vaderSentiment>=3.3.2",
"pandas>=2.1.0",
"accelerate>=0.24.0",
"python-dotenv>=1.0.0"
])
.run_commands([
"python -c \"import nltk; nltk.download('punkt'); nltk.download('punkt_tab'); nltk.download('vader_lexicon'); nltk.download('averaged_perceptron_tagger')\"",
"python -m textblob.download_corpora",
"python -c \"import textblob; textblob.TextBlob('test').tags\""
])
)
# Shared volume for model caching
model_volume = modal.Volume.from_name("feature-agent-models", create_if_missing=True)
@app.function(
image=image,
gpu="T4", # Use T4 GPU for cost efficiency
memory=4096, # 4GB RAM
timeout=300, # 5 minute timeout
volumes={"/models": model_volume},
min_containers=1 # Keep one instance warm for faster response
)
def gpu_batch_sentiment_analysis(texts: List[str], batch_size: int = 32) -> List[Dict[str, Any]]:
"""
Perform GPU-accelerated sentiment analysis on a batch of texts
Args:
texts: List of text strings to analyze
batch_size: Batch size for processing
Returns:
List of sentiment analysis results
"""
import torch
from transformers.pipelines import pipeline
from transformers import AutoTokenizer, AutoModelForSequenceClassification
from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer
from textblob import TextBlob
import time
start_time = time.time()
logger.info(f"Starting GPU sentiment analysis for {len(texts)} texts")
try:
# Initialize VADER analyzer (CPU-based, fast for social media text)
vader_analyzer = SentimentIntensityAnalyzer()
# Load transformer model for more sophisticated analysis
model_name = "cardiffnlp/twitter-roberta-base-sentiment-latest"
cache_dir = "/models/sentiment"
# Use GPU if available
device = 0 if torch.cuda.is_available() else -1
# Initialize sentiment pipeline with caching
sentiment_pipeline = pipeline(
"sentiment-analysis",
model=model_name,
tokenizer=model_name,
device=device,
model_kwargs={"cache_dir": cache_dir},
max_length=512,
truncation=True
)
results = []
# Process texts in batches
for i in range(0, len(texts), batch_size):
batch_texts = texts[i:i + batch_size]
batch_results = []
# GPU-accelerated transformer analysis
transformer_results = sentiment_pipeline(batch_texts)
# Process each text in the batch
for j, text in enumerate(batch_texts):
if not text or len(text.strip()) == 0:
batch_results.append({
"text": text,
"error": "Empty text",
"processing_time": 0
})
continue
text_start = time.time()
# VADER sentiment (good for social media, slang, emojis)
vader_scores = vader_analyzer.polarity_scores(text)
# TextBlob sentiment (grammar-based)
try:
blob = TextBlob(text)
textblob_sentiment = blob.sentiment
except:
textblob_sentiment = None
# Transformer sentiment (deep learning)
transformer_result = transformer_results[j] # type: ignore
# Map transformer labels to consistent format
transformer_label = transformer_result["label"].lower() # type: ignore
if transformer_label in ["positive", "pos"]:
transformer_sentiment = "positive"
elif transformer_label in ["negative", "neg"]:
transformer_sentiment = "negative"
else:
transformer_sentiment = "neutral"
# Combine all sentiment scores
combined_result = {
"text": text[:100] + "..." if len(text) > 100 else text, # Truncate for storage
"vader": {
"compound": vader_scores["compound"],
"positive": vader_scores["pos"],
"negative": vader_scores["neg"],
"neutral": vader_scores["neu"]
},
"textblob": {
"polarity": textblob_sentiment.polarity if textblob_sentiment else 0, # type: ignore
"subjectivity": textblob_sentiment.subjectivity if textblob_sentiment else 0 # type: ignore
},
"transformer": {
"label": transformer_sentiment,
"confidence": transformer_result["score"] # type: ignore
},
"consensus": _calculate_consensus_sentiment(
vader_scores["compound"],
textblob_sentiment.polarity if textblob_sentiment else 0, # type: ignore
transformer_sentiment,
transformer_result["score"] # type: ignore
),
"processing_time": time.time() - text_start
}
batch_results.append(combined_result)
results.extend(batch_results)
# Log progress
processed = min(i + batch_size, len(texts))
logger.info(f"Processed {processed}/{len(texts)} texts")
total_time = time.time() - start_time
logger.info(f"GPU sentiment analysis completed in {total_time:.2f}s")
# Add summary statistics
summary = _calculate_batch_summary(results)
return {
"results": results,
"summary": summary,
"processing_stats": {
"total_texts": len(texts),
"total_time": total_time,
"texts_per_second": len(texts) / total_time,
"gpu_used": torch.cuda.is_available(),
"model_used": model_name
}
} # type: ignore
except Exception as e:
logger.error(f"Error in GPU sentiment analysis: {str(e)}")
return {
"error": str(e),
"processing_stats": {
"total_texts": len(texts),
"total_time": time.time() - start_time,
"gpu_used": False
}
} # type: ignore
def _calculate_consensus_sentiment(vader_compound: float, textblob_polarity: float,
transformer_label: str, transformer_confidence: float) -> Dict[str, Any]:
"""Calculate consensus sentiment from multiple models"""
# Convert transformer to numeric
transformer_score = 0
if transformer_label == "positive":
transformer_score = transformer_confidence
elif transformer_label == "negative":
transformer_score = -transformer_confidence
# Weight the scores (transformer gets higher weight due to confidence)
weights = {
"vader": 0.3,
"textblob": 0.2,
"transformer": 0.5
}
weighted_score = (
vader_compound * weights["vader"] +
textblob_polarity * weights["textblob"] +
transformer_score * weights["transformer"]
)
# Classify final sentiment
if weighted_score >= 0.1:
consensus_label = "positive"
elif weighted_score <= -0.1:
consensus_label = "negative"
else:
consensus_label = "neutral"
# Calculate confidence based on agreement
scores = [vader_compound, textblob_polarity, transformer_score]
agreement = 1.0 - (np.std(scores) / 2.0) # Higher agreement = lower std dev
return {
"label": consensus_label,
"score": weighted_score,
"confidence": max(0.0, min(1.0, agreement)) # type: ignore
}
def _calculate_batch_summary(results: List[Dict[str, Any]]) -> Dict[str, Any]:
"""Calculate summary statistics for batch results"""
if not results:
return {}
valid_results = [r for r in results if "error" not in r]
if not valid_results:
return {"error": "No valid results"}
# Count sentiment labels
sentiment_counts = {"positive": 0, "negative": 0, "neutral": 0}
total_confidence = 0
total_processing_time = 0
for result in valid_results:
consensus = result.get("consensus", {})
label = consensus.get("label", "neutral")
confidence = consensus.get("confidence", 0)
sentiment_counts[label] += 1
total_confidence += confidence
total_processing_time += result.get("processing_time", 0)
total_valid = len(valid_results)
return {
"total_analyzed": total_valid,
"sentiment_distribution": {
"positive": sentiment_counts["positive"],
"negative": sentiment_counts["negative"],
"neutral": sentiment_counts["neutral"],
"positive_pct": (sentiment_counts["positive"] / total_valid) * 100,
"negative_pct": (sentiment_counts["negative"] / total_valid) * 100,
"neutral_pct": (sentiment_counts["neutral"] / total_valid) * 100
},
"average_confidence": total_confidence / total_valid,
"average_processing_time": total_processing_time / total_valid,
"dominant_sentiment": max(sentiment_counts, key=sentiment_counts.get) # type: ignore
}
@app.function(
image=image,
gpu="T4",
memory=2048,
timeout=180
)
def gpu_keyword_extraction(texts: List[str], max_keywords: int = 10) -> Dict[str, Any]:
"""
Extract keywords using GPU-accelerated NLP models
"""
import torch
from transformers.pipelines import pipeline
from textblob import TextBlob
from sklearn.feature_extraction.text import TfidfVectorizer
import time
start_time = time.time()
logger.info(f"Starting GPU keyword extraction for {len(texts)} texts")
try:
# Combine all texts
combined_text = " ".join(texts)
# Use TextBlob for noun phrase extraction
blob = TextBlob(combined_text)
noun_phrases = list(blob.noun_phrases) # type: ignore
# Use TF-IDF for important terms
vectorizer = TfidfVectorizer(
max_features=max_keywords * 2,
ngram_range=(1, 3),
stop_words="english"
)
if texts:
tfidf_matrix = vectorizer.fit_transform(texts)
feature_names = vectorizer.get_feature_names_out()
tfidf_scores = tfidf_matrix.sum(axis=0).A1 # type: ignore
# Get top TF-IDF terms
top_indices = tfidf_scores.argsort()[-max_keywords:][::-1]
tfidf_keywords = [(feature_names[i], tfidf_scores[i]) for i in top_indices]
else:
tfidf_keywords = []
# Combine and rank keywords
all_keywords = {}
# Add noun phrases
for phrase in noun_phrases:
if len(phrase) > 3: # Filter short phrases
all_keywords[phrase] = all_keywords.get(phrase, 0) + 1
# Add TF-IDF terms
for term, score in tfidf_keywords:
all_keywords[term] = all_keywords.get(term, 0) + score
# Sort by importance
sorted_keywords = sorted(all_keywords.items(), key=lambda x: x[1], reverse=True)
result = {
"keywords": sorted_keywords[:max_keywords],
"total_texts": len(texts),
"processing_time": time.time() - start_time,
"method": "hybrid_tfidf_nlp"
}
logger.info(f"Keyword extraction completed in {result['processing_time']:.2f}s")
return result
except Exception as e:
logger.error(f"Error in keyword extraction: {str(e)}")
return {"error": str(e)}
class GPUProcessor:
"""Client interface for Modal GPU processing"""
def __init__(self):
"""Initialize GPU processor client"""
self.app = app
self.modal_available = False
self.setup_modal_client()
def setup_modal_client(self):
"""Setup Modal client with credentials and test connection"""
logger.info("⚙️ Modal Labs client setup - Started")
try:
# Check for Modal token
modal_token = os.getenv("MODAL_TOKEN")
if not modal_token:
error_msg = "No Modal token found in environment variables (MODAL_TOKEN)"
logger.error(f"❌ Modal Labs API failed: {error_msg}")
self.modal_available = False
return
logger.info(f"🔌 Attempting to connect to Modal Labs API with token ending in ...{modal_token[-4:]}")
# Test Modal connection by trying to import and validate
try:
import modal
# Try to create a simple app to test connection
test_app = modal.App("connection-test")
logger.info("✅ Modal Labs API connected successfully - client initialized")
self.modal_available = True
logger.info("⚙️ Modal Labs client setup - Completed")
except Exception as modal_error:
error_msg = f"Modal Labs connection test failed: {str(modal_error)}"
logger.error(f"❌ Modal Labs API failed: {error_msg}")
self.modal_available = False
except Exception as e:
error_msg = f"Modal Labs client setup failed: {str(e)}"
logger.error(f"❌ Modal Labs API failed: {error_msg}")
logger.error("⚙️ Modal Labs client setup - Failed")
self.modal_available = False
async def batch_sentiment_analysis(self, data_sources: List[Any]) -> Dict[str, Any]:
"""
Process multiple data sources with sentiment analysis (GPU if available, fallback to local)
Args:
data_sources: List of data from different collectors
Returns:
Comprehensive sentiment analysis
"""
try:
# Extract texts from different data sources
all_texts = []
source_mapping = {}
for i, source in enumerate(data_sources):
source_texts = self._extract_texts_from_source(source)
# Track which texts come from which source
start_idx = len(all_texts)
all_texts.extend(source_texts)
end_idx = len(all_texts)
source_mapping[f"source_{i}"] = {
"start": start_idx,
"end": end_idx,
"count": len(source_texts),
"type": self._identify_source_type(source),
"data": source # Store original data for fallback
}
if not all_texts:
return {"error": "No texts found in data sources"}
# Try Modal GPU processing if available
if self.modal_available:
try:
logger.info(f"Sending {len(all_texts)} texts to Modal GPU processing")
with app.run():
sentiment_results = gpu_batch_sentiment_analysis.remote(all_texts)
# Reorganize results by source
organized_results = self._organize_results_by_source(
sentiment_results, source_mapping # type: ignore
)
return organized_results
except Exception as modal_error:
logger.warning(f"Modal GPU processing failed: {str(modal_error)}")
logger.info("Falling back to local sentiment analysis")
# Fallback to local sentiment analysis
logger.info(f"Processing {len(all_texts)} texts with local sentiment analysis")
sentiment_results = await self._local_sentiment_analysis(all_texts)
# Reorganize results by source
organized_results = self._organize_results_by_source(
sentiment_results, source_mapping
)
return organized_results
except Exception as e:
logger.error(f"Error in batch sentiment analysis: {str(e)}")
return {"error": str(e)}
async def extract_keywords(self, texts: List[str], max_keywords: int = 20) -> Dict[str, Any]:
"""Extract keywords using GPU acceleration"""
try:
with app.run():
result = gpu_keyword_extraction.remote(texts, max_keywords)
return result
except Exception as e:
logger.error(f"Error in keyword extraction: {str(e)}")
return {"error": str(e)}
async def _local_sentiment_analysis(self, texts: List[str]) -> Dict[str, Any]:
"""
Local sentiment analysis fallback using VADER and TextBlob
"""
try:
from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer
from textblob import TextBlob
import time
start_time = time.time()
vader_analyzer = SentimentIntensityAnalyzer()
results = []
for text in texts:
if not text or len(text.strip()) == 0:
results.append({
"text": text,
"error": "Empty text",
"processing_time": 0
})
continue
text_start = time.time()
# VADER sentiment
vader_scores = vader_analyzer.polarity_scores(text)
# TextBlob sentiment
try:
blob = TextBlob(text)
textblob_sentiment = blob.sentiment
except:
textblob_sentiment = None
# Simple consensus (weighted average)
vader_compound = vader_scores["compound"]
textblob_polarity = textblob_sentiment.polarity if textblob_sentiment else 0
# Calculate consensus
weighted_score = (vader_compound * 0.6) + (textblob_polarity * 0.4)
if weighted_score >= 0.1:
consensus_label = "positive"
elif weighted_score <= -0.1:
consensus_label = "negative"
else:
consensus_label = "neutral"
# Calculate confidence based on agreement
agreement = 1.0 - abs(vader_compound - textblob_polarity) / 2.0
confidence = max(0.0, min(1.0, agreement))
result = {
"text": text[:100] + "..." if len(text) > 100 else text,
"vader": {
"compound": vader_compound,
"positive": vader_scores["pos"],
"negative": vader_scores["neg"],
"neutral": vader_scores["neu"]
},
"textblob": {
"polarity": textblob_polarity,
"subjectivity": textblob_sentiment.subjectivity if textblob_sentiment else 0
},
"consensus": {
"label": consensus_label,
"score": weighted_score,
"confidence": confidence
},
"processing_time": time.time() - text_start
}
results.append(result)
total_time = time.time() - start_time
# Calculate summary
summary = _calculate_batch_summary(results)
return {
"results": results,
"summary": summary,
"processing_stats": {
"total_texts": len(texts),
"total_time": total_time,
"texts_per_second": len(texts) / total_time if total_time > 0 else 0,
"gpu_used": False,
"model_used": "local_vader_textblob"
}
}
except Exception as e:
logger.error(f"Error in local sentiment analysis: {str(e)}")
return {"error": str(e)}
def _extract_texts_from_source(self, source: Any) -> List[str]:
"""Extract text content from different data source formats"""
texts = []
if isinstance(source, dict):
# App Store reviews
if "apps" in source:
for app_name, app_data in source["apps"].items():
if "reviews" in app_data:
for review in app_data["reviews"]:
title = review.get("title", "")
content = review.get("content", "")
combined = f"{title} {content}".strip()
if combined:
texts.append(combined)
# Reddit posts
elif "posts" in source:
for post in source["posts"]:
title = post.get("title", "")
selftext = post.get("selftext", "")
combined = f"{title} {selftext}".strip()
if combined:
texts.append(combined)
# News articles (check multiple possible structures)
elif "articles" in source:
for article in source["articles"]:
title = article.get("title", "")
description = article.get("description", "")
combined = f"{title} {description}".strip()
if combined:
texts.append(combined)
# News search results structure
elif "search_results" in source:
for search_term, results in source["search_results"].items():
if "articles" in results:
for article in results["articles"]:
title = article.get("title", "")
description = article.get("description", "")
combined = f"{title} {description}".strip()
if combined:
texts.append(combined)
# Reddit query results structure
elif "query_results" in source:
for query, result in source["query_results"].items():
if "posts" in result:
for post in result["posts"]:
title = post.get("title", "")
selftext = post.get("selftext", "")
combined = f"{title} {selftext}".strip()
if combined:
texts.append(combined)
return texts
def _identify_source_type(self, source: Any) -> str:
"""Identify the type of data source"""
if isinstance(source, dict):
if "apps" in source:
return "app_store"
elif "posts" in source:
return "reddit"
elif "articles" in source:
return "news"
return "unknown"
def _organize_results_by_source(self, sentiment_results: Dict[str, Any],
source_mapping: Dict[str, Any]) -> Dict[str, Any]:
"""Organize sentiment results by original data source"""
if "error" in sentiment_results:
return sentiment_results
results = sentiment_results.get("results", [])
summary = sentiment_results.get("summary", {})
processing_stats = sentiment_results.get("processing_stats", {})
organized = {
"by_source": {},
"overall_summary": summary,
"processing_stats": processing_stats
}
# Split results back to sources
for source_id, mapping in source_mapping.items():
start_idx = mapping["start"]
end_idx = mapping["end"]
source_results = results[start_idx:end_idx]
# Calculate source-specific summary
source_summary = _calculate_batch_summary(source_results)
organized["by_source"][source_id] = {
"type": mapping["type"],
"count": mapping["count"],
"results": source_results,
"summary": source_summary
}
return organized
# Example usage and testing functions
async def test_gpu_processor():
"""Test function for GPU processor"""
processor = GPUProcessor()
# Test data
test_texts = [
"This product is amazing! I love using it every day.",
"Terrible experience, would not recommend to anyone.",
"It's okay, nothing special but does the job.",
"Outstanding features and great customer service!",
"Complete waste of money, very disappointed."
]
# Test sentiment analysis
print("Testing GPU sentiment analysis...")
mock_sources = [
{"posts": [{"title": text, "selftext": ""} for text in test_texts[:3]]},
{"articles": [{"title": text, "description": ""} for text in test_texts[3:]]}
]
sentiment_result = await processor.batch_sentiment_analysis(mock_sources)
print(f"Sentiment analysis completed: {sentiment_result.get('processing_stats', {}).get('total_texts', 0)} texts processed")
# Test keyword extraction
print("Testing GPU keyword extraction...")
keyword_result = await processor.extract_keywords(test_texts)
print(f"Keyword extraction: {len(keyword_result.get('keywords', []))} keywords found")
return sentiment_result, keyword_result
if __name__ == "__main__":
# Run test
asyncio.run(test_gpu_processor())