File size: 58,974 Bytes
88bf326 a97a356 4630465 88bf326 d63408c 88bf326 315c3eb 88bf326 315c3eb 88bf326 315c3eb 88bf326 315c3eb 88bf326 315c3eb 88bf326 315c3eb 88bf326 315c3eb 88bf326 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 |
#!/usr/bin/env python3
"""
IPMentor Exercise Generator - Agentic Subnetting Exercise Creator
Creates validated subnetting exercises using IPMentor MCP tools
"""
import asyncio
import os
import json
import re
from typing import List, Dict, Any
from dotenv import load_dotenv
import tempfile
from pathlib import Path
import zipfile
import requests
import gradio as gr
from openai import OpenAI
import markdown
import pdfkit
from langchain_mcp_adapters.client import MultiServerMCPClient
# Load environment variables
load_dotenv()
# CONFIGURATION
# Fixed MCP server URL for IPMentor
IPMENTOR_MCP_SERVER_URL = "https://agents-mcp-hackathon-ipmentor.hf.space/gradio_api/mcp/sse"
# Default exercise templates by language
DEFAULT_TEMPLATES = {
"English": "A company needs to divide the network {network} for its {num_departments} departments. Each department requires approximately {hosts} hosts. Design the appropriate subnetting scheme.",
"Spanish": "Una empresa necesita dividir la red {network} para sus {num_departments} departamentos. Cada departamento requiere aproximadamente {hosts} hosts. Diseña el esquema de subnetting apropiado.",
"French": "Une entreprise doit diviser le réseau {network} pour ses {num_departments} départements. Chaque département nécessite environ {hosts} hôtes. Concevez le schéma de sous-réseaux approprié.",
"German": "Ein Unternehmen muss das Netzwerk {network} für seine {num_departments} Abteilungen aufteilen. Jede Abteilung benötigt etwa {hosts} Hosts. Entwerfen Sie das entsprechende Subnetting-Schema."
}
# Exercise generation prompts by language
EXERCISE_GENERATION_PROMPTS = {
"English": """Generate {num_exercises} unique subnetting exercises with {difficulty} difficulty level.
Difficulty guidelines:
- easy: 2 subnets, no VLSM (equal subnet sizes)
- medium: 3-4 subnets, mix of max_subnets, max_hosts_per_subnet, and some VLSM
- difficult: 5-10 subnets, primarily VLSM with varied host requirements
Template to follow: {template}
For each exercise, provide:
1. A realistic network scenario (company, school, etc.)
2. Network address (use private ranges: 192.168.x.0/24, 10.x.0.0/16, 172.16-31.x.0/20)
3. Specific subnet requirements (number of hosts per subnet or departments)
4. Clear instructions
Return a JSON array with this structure:
[
{{
"exercise_number": 1,
"title": "Exercise title",
"scenario": "Detailed scenario description",
"network": "192.168.1.0/24",
"requirements": "Specific subnetting requirements",
"method": "max_subnets|max_hosts_per_subnet|vlsm",
"hosts_list": "50,30,20" (for VLSM) or empty for other methods,
"number": 4 (for non-VLSM methods)
}}
]
Make exercises realistic and educational.""",
"Spanish": """Genera {num_exercises} ejercicios únicos de subnetting con nivel de dificultad {difficulty}.
Guías de dificultad:
- easy: 2 subredes, sin VLSM (tamaños de subred iguales)
- medium: 3-4 subredes, mezcla de max_subnets, max_hosts_per_subnet, y algo de VLSM
- difficult: 5-10 subredes, principalmente VLSM con requisitos de hosts variados
Plantilla a seguir: {template}
Para cada ejercicio, proporciona:
1. Un escenario de red realista (empresa, escuela, etc.)
2. Dirección de red (usa rangos privados: 192.168.x.0/24, 10.x.0.0/16, 172.16-31.x.0/20)
3. Requisitos específicos de subred (número de hosts por subred o departamentos)
4. Instrucciones claras
Devuelve un array JSON con esta estructura:
[
{{
"exercise_number": 1,
"title": "Título del ejercicio",
"scenario": "Descripción detallada del escenario",
"network": "192.168.1.0/24",
"requirements": "Requisitos específicos de subnetting",
"method": "max_subnets|max_hosts_per_subnet|vlsm",
"hosts_list": "50,30,20" (para VLSM) o vacío para otros métodos,
"number": 4 (para métodos no-VLSM)
}}
]
Haz los ejercicios realistas y educativos.""",
"French": """Générez {num_exercises} exercices uniques de sous-réseaux avec un niveau de difficulté {difficulty}.
Directives de difficulté:
- easy: 2 sous-réseaux, pas de VLSM (tailles de sous-réseaux égales)
- medium: 3-4 sous-réseaux, mélange de max_subnets, max_hosts_per_subnet, et un peu de VLSM
- difficult: 5-10 sous-réseaux, principalement VLSM avec des exigences d'hôtes variées
Modèle à suivre: {template}
Pour chaque exercice, fournissez:
1. Un scénario de réseau réaliste (entreprise, école, etc.)
2. Adresse réseau (utilisez des plages privées: 192.168.x.0/24, 10.x.0.0/16, 172.16-31.x.0/20)
3. Exigences spécifiques de sous-réseau (nombre d'hôtes par sous-réseau ou départements)
4. Instructions claires
Retournez un tableau JSON avec cette structure:
[
{{
"exercise_number": 1,
"title": "Titre de l'exercice",
"scenario": "Description détaillée du scénario",
"network": "192.168.1.0/24",
"requirements": "Exigences spécifiques de sous-réseaux",
"method": "max_subnets|max_hosts_per_subnet|vlsm",
"hosts_list": "50,30,20" (pour VLSM) ou vide pour d'autres méthodes,
"number": 4 (pour les méthodes non-VLSM)
}}
]
Rendez les exercices réalistes et éducatifs.""",
"German": """Generieren Sie {num_exercises} einzigartige Subnetting-Übungen mit Schwierigkeitsgrad {difficulty}.
Schwierigkeitsrichtlinien:
- easy: 2 Subnetze, kein VLSM (gleiche Subnetzgrößen)
- medium: 3-4 Subnetze, Mischung aus max_subnets, max_hosts_per_subnet, und etwas VLSM
- difficult: 5-10 Subnetze, hauptsächlich VLSM mit unterschiedlichen Host-Anforderungen
Zu befolgende Vorlage: {template}
Für jede Übung stellen Sie bereit:
1. Ein realistisches Netzwerkszenario (Unternehmen, Schule, etc.)
2. Netzwerkadresse (verwenden Sie private Bereiche: 192.168.x.0/24, 10.x.0.0/16, 172.16-31.x.0/20)
3. Spezifische Subnetz-Anforderungen (Anzahl Hosts pro Subnetz oder Abteilungen)
4. Klare Anweisungen
Geben Sie ein JSON-Array mit dieser Struktur zurück:
[
{{
"exercise_number": 1,
"title": "Übungstitel",
"scenario": "Detaillierte Szenariobeschreibung",
"network": "192.168.1.0/24",
"requirements": "Spezifische Subnetting-Anforderungen",
"method": "max_subnets|max_hosts_per_subnet|vlsm",
"hosts_list": "50,30,20" (für VLSM) oder leer für andere Methoden,
"number": 4 (für Nicht-VLSM-Methoden)
}}
]
Machen Sie die Übungen realistisch und lehrreich."""
}
# UTILITY FUNCTIONS
def safe_json_serialize(obj):
"""Safely serialize an object to JSON, handling non-serializable types."""
try:
if isinstance(obj, (str, int, float, bool, type(None))):
return obj
elif isinstance(obj, dict):
return {k: safe_json_serialize(v) for k, v in obj.items()}
elif isinstance(obj, (list, tuple)):
return [safe_json_serialize(item) for item in obj]
elif hasattr(obj, '__dict__'):
return safe_json_serialize(obj.__dict__)
elif hasattr(obj, 'dict') and callable(obj.dict):
return safe_json_serialize(obj.dict())
elif hasattr(obj, 'model_dump') and callable(obj.model_dump):
return safe_json_serialize(obj.model_dump())
else:
return str(obj)
except Exception:
return str(obj)
def safe_json_dumps(obj, **kwargs):
"""Safe JSON dumps that handles non-serializable objects."""
try:
return json.dumps(safe_json_serialize(obj), **kwargs)
except Exception as e:
return json.dumps({"error": f"Error serializing: {str(e)}", "data": str(obj)}, **kwargs)
def markdown_to_pdf(markdown_content: str, output_path: str) -> str:
"""Convert markdown to PDF using pdfkit."""
try:
# Convert markdown to HTML and add exercise break classes
html_content = markdown.markdown(markdown_content, extensions=['tables', 'fenced_code'])
# Add CSS classes for better page breaks
import re
# Add exercise-break class to h2 elements (exercises)
html_content = re.sub(r'<h2>', r'<h2 class="exercise-break">', html_content)
# Get the logo path
logo_path = "https://huggingface.co/spaces/Agents-MCP-Hackathon/ipmentor-subnetting-exercises-generator/resolve/main/assets/logo.svg"
logo_exists = True
# Add CSS styling with IPMentor branding colors
styled_html = f"""
<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<style>
@page {{
margin: 1in 1in 100px 1in;
}}
body {{
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
line-height: 1.6;
margin: 0;
padding: 20px;
color: #333;
background: #fefefe;
}}
h1 {{
color: #FC8100;
border-bottom: 4px solid #FED200;
padding-bottom: 15px;
margin-bottom: 30px;
font-size: 2.2em;
font-weight: bold;
}}
h2 {{
color: #FC8100;
border-bottom: 3px solid #FFCB00;
padding-bottom: 8px;
margin-top: 40px;
margin-bottom: 20px;
font-size: 1.5em;
page-break-after: avoid;
}}
h3 {{
color: #FE8100;
margin-top: 25px;
margin-bottom: 15px;
font-size: 1.2em;
}}
p {{
margin-bottom: 15px;
text-align: justify;
}}
em {{
color: #F05600;
font-style: italic;
}}
strong {{
color: #FE8100;
}}
a {{
color: #F05600;
text-decoration: none;
border-bottom: 1px dotted #F05600;
}}
a:hover {{
border-bottom: 1px solid #F05600;
}}
img {{
max-width: 85%;
max-height: 450px;
height: auto;
display: block;
margin: 25px auto;
border: 2px solid #FED200;
border-radius: 8px;
box-shadow: 0 4px 8px rgba(254, 129, 0, 0.1);
}}
code {{
background: #FFF4E6;
color: #FC8100;
padding: 2px 6px;
border-radius: 4px;
font-family: 'Courier New', monospace;
border: 1px solid #FED200;
}}
pre {{
background: #FFF8F0;
padding: 20px;
border-radius: 8px;
border-left: 6px solid #F05600;
margin: 20px 0;
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
}}
hr {{
border: none;
height: 3px;
background: linear-gradient(90deg, #F05600, #FED200, #FFCB00);
margin: 30px 0;
border-radius: 2px;
}}
.exercise-break {{
page-break-before: always;
margin-top: 0;
}}
.exercise-break:first-of-type {{
page-break-before: avoid;
}}
</style>
</head>
<body>
{html_content}
</body>
</html>
"""
# Create temporary footer HTML file with logo
footer_html_path = None
if logo_exists:
with tempfile.NamedTemporaryFile(mode='w', suffix='.html', delete=False, encoding='utf-8') as footer_file:
footer_html_path = footer_file.name
footer_content = f"""
<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<style>
body {{
margin: 0;
padding: 8px;
text-align: center;
}}
.logo {{
height: 38px;
width: auto;
}}
</style>
</head>
<body>
<img src="{logo_path}" alt="IPMentor" class="logo">
</body>
</html>
"""
footer_file.write(footer_content)
# Configure PDF options
options = {
'page-size': 'A4',
'margin-top': '1in',
'margin-right': '1in',
'margin-bottom': '1in',
'margin-left': '1in',
'encoding': "UTF-8",
'no-outline': None,
'enable-local-file-access': None,
'print-media-type': None,
'disable-smart-shrinking': None
}
# Add footer if logo exists
if footer_html_path:
options['footer-html'] = footer_html_path
options['footer-spacing'] = '5'
# Generate PDF
try:
pdfkit.from_string(styled_html, output_path, options=options)
finally:
# Clean up temporary footer file
if footer_html_path and os.path.exists(footer_html_path):
os.remove(footer_html_path)
return output_path
except Exception as e:
raise Exception(f"PDF generation failed: {str(e)}")
# MCP CLIENT CLASS
class ExerciseGenerator:
def __init__(self):
self.mcp_client = None
self.tools = []
self.connection_status = "Disconnected"
# Configure OpenAI client for OpenRouter with Mistral Medium 3
self.openai_client = OpenAI(
api_key=os.getenv("OPENROUTER_API_KEY"),
base_url=os.getenv("OPENROUTER_BASE_URL", "https://openrouter.ai/api/v1"),
)
self.model_name = "mistralai/mistral-medium-3"
async def connect_to_ipmentor(self) -> str:
"""Connect to IPMentor MCP server"""
try:
print(f"Connecting to IPMentor server: {IPMENTOR_MCP_SERVER_URL}")
self.mcp_client = MultiServerMCPClient({
"ipmentor": {
"transport": "sse",
"url": IPMENTOR_MCP_SERVER_URL
}
})
# Get available tools
mcp_tools = await self.mcp_client.get_tools()
# Convert tools to OpenAI format
self.tools = []
for tool in mcp_tools:
input_schema = {"type": "object", "properties": {}, "required": []}
try:
schema_obj = None
if hasattr(tool, 'input_schema'):
schema_obj = tool.input_schema
elif hasattr(tool, 'args_schema') and tool.args_schema:
if hasattr(tool.args_schema, 'model_json_schema'):
schema_obj = tool.args_schema.model_json_schema()
elif hasattr(tool.args_schema, 'schema'):
schema_obj = tool.args_schema.schema()
if schema_obj:
serialized_schema = safe_json_serialize(schema_obj)
if isinstance(serialized_schema, dict):
input_schema = serialized_schema
except Exception as e:
print(f"Warning: Could not serialize schema for {tool.name}: {e}")
tool_def = {
"type": "function",
"function": {
"name": tool.name,
"description": tool.description,
"parameters": input_schema
}
}
self.tools.append(tool_def)
self.connection_status = "Connected"
tool_names = [tool["function"]["name"] for tool in self.tools]
return f"✅ Connected to IPMentor. Tools: {', '.join(tool_names)}"
except Exception as e:
self.connection_status = "Error"
return f"❌ Connection error: {str(e)}"
async def call_mcp_tool(self, tool_name: str, tool_args: dict) -> Any:
"""Call a tool from the MCP server"""
try:
if not self.mcp_client:
return {"error": "MCP client not initialized"}
mcp_tools = await self.mcp_client.get_tools()
tool_to_call = None
for tool in mcp_tools:
if tool.name == tool_name:
tool_to_call = tool
break
if not tool_to_call:
return {"error": f"Tool {tool_name} not found"}
# Call the tool
result = None
if hasattr(tool_to_call, 'ainvoke'):
result = await tool_to_call.ainvoke(tool_args)
elif hasattr(tool_to_call, 'acall'):
result = await tool_to_call.acall(tool_args)
elif hasattr(tool_to_call, 'func'):
result = tool_to_call.func(**tool_args)
else:
return {"error": f"No compatible method found for tool {tool_name}"}
# Process result
if isinstance(result, list) and len(result) == 2:
# Handle diagram generation result
image_url = result[0]
status_msg = result[1]
if '/gradio_api/file=' in image_url:
file_path = image_url.split('/gradio_api/file=')[1]
base_url = IPMENTOR_MCP_SERVER_URL.replace('/gradio_api/mcp/sse', '')
return {
"image_path": f"{base_url}/gradio_api/file={file_path}",
"status": status_msg,
"format": "svg" if file_path.lower().endswith('.svg') else "png"
}
return {"result": result}
# Handle string results (JSON from other tools)
try:
if isinstance(result, str):
parsed_result = json.loads(result)
return safe_json_serialize(parsed_result)
else:
return safe_json_serialize(result)
except json.JSONDecodeError:
return {"result": str(result)}
except Exception as e:
return {"error": f"Error calling tool {tool_name}: {str(e)}"}
def generate_exercises_with_llm(self, num_exercises: int, difficulty: str, language: str, template: str) -> List[Dict]:
"""Generate exercises using LLM"""
try:
print(f"Starting LLM generation: {num_exercises} exercises, {difficulty} difficulty, {language} language")
# Use default template if none provided
if not template.strip():
template = DEFAULT_TEMPLATES.get(language, DEFAULT_TEMPLATES["English"])
print(f"Using template: {template[:100]}...")
# Get the prompt for the language
prompt = EXERCISE_GENERATION_PROMPTS.get(language, EXERCISE_GENERATION_PROMPTS["English"])
print(f"Using prompt for language: {language}")
formatted_prompt = prompt.format(
num_exercises=num_exercises,
difficulty=difficulty,
template=template
)
print(f"Formatted prompt length: {len(formatted_prompt)}")
response = self.openai_client.chat.completions.create(
model=self.model_name,
messages=[
{"role": "system", "content": "You are an expert networking instructor who creates realistic subnetting exercises. Always return valid JSON arrays."},
{"role": "user", "content": formatted_prompt}
],
temperature=0.7
)
if not response.choices or len(response.choices) == 0:
print("No choices in LLM response")
return []
print(f"Got response with {len(response.choices)} choices")
content = response.choices[0].message.content
if not content:
print("Empty content in LLM response")
return []
content = content.strip()
print(f"Response content length: {len(content)}")
print(f"First 200 chars: {content[:200]}")
# Extract JSON from response (handle markdown code blocks)
json_match = re.search(r'```(?:json)?\s*(\[.*?\])\s*```', content, re.DOTALL)
if json_match:
json_str = json_match.group(1)
print("Found JSON in code blocks")
else:
# Try to find JSON array directly
json_match = re.search(r'(\[.*?\])', content, re.DOTALL)
if json_match:
json_str = json_match.group(1)
print("Found JSON array directly")
else:
json_str = content
print("Using full content as JSON")
print(f"JSON string length: {len(json_str)}")
print(f"JSON preview: {json_str[:200]}")
exercises = json.loads(json_str)
print(f"Successfully parsed JSON. Type: {type(exercises)}")
# Validate that exercises is a list
if not isinstance(exercises, list):
print(f"Expected list but got {type(exercises)}")
return []
print(f"Got {len(exercises)} exercises from LLM")
# Validate each exercise has required fields
valid_exercises = []
for i, exercise in enumerate(exercises):
print(f"Processing exercise {i+1}: {type(exercise)}")
if not isinstance(exercise, dict):
print(f"Exercise {i} is not a dictionary")
continue
print(f"Exercise {i+1} keys: {list(exercise.keys())}")
required_fields = ['exercise_number', 'title', 'scenario', 'network', 'requirements', 'method']
missing_fields = [f for f in required_fields if f not in exercise]
if not missing_fields:
# Ensure proper data types
if 'number' not in exercise:
exercise['number'] = 2
if 'hosts_list' not in exercise:
exercise['hosts_list'] = ""
valid_exercises.append(exercise)
print(f"Exercise {i+1} is valid")
else:
print(f"Exercise {i+1} missing required fields: {missing_fields}")
print(f"Returning {len(valid_exercises)} valid exercises")
return valid_exercises
except json.JSONDecodeError as e:
print(f"JSON parsing error: {e}")
print(f"Content that failed to parse: {content if 'content' in locals() else 'No content'}")
return []
except Exception as e:
print(f"Error generating exercises: {e}")
return []
async def validate_and_fix_exercise(self, exercise: Dict) -> Dict:
"""Validate exercise using MCP tools and fix if needed"""
max_attempts = 3
for attempt in range(max_attempts):
try:
print(f"Validating exercise {exercise['exercise_number']} (attempt {attempt + 1})")
# Prepare tool arguments based on method
if exercise["method"] == "vlsm":
tool_args = {
"network": exercise["network"],
"division_type": "vlsm",
"hosts_per_subnet": exercise["hosts_list"],
"number": "" # Not needed for VLSM
}
else:
tool_args = {
"network": exercise["network"],
"division_type": exercise["method"],
"number": str(exercise["number"]),
"hosts_per_subnet": ""
}
# Test subnet calculation
result = await self.call_mcp_tool("ipmentor_subnet_calculator", tool_args)
if "error" not in result:
print(f"✅ Exercise {exercise['exercise_number']} is valid")
return exercise
print(f"❌ Exercise {exercise['exercise_number']} failed validation: {result.get('error', 'Unknown error')}")
# Try to fix the exercise
if attempt < max_attempts - 1:
exercise = await self.fix_exercise(exercise, result.get('error', ''))
except Exception as e:
print(f"Error validating exercise: {e}")
if attempt < max_attempts - 1:
# Simple fallback: reduce requirements
if exercise["method"] == "vlsm" and exercise["hosts_list"]:
hosts = [max(1, int(h)//2) for h in exercise["hosts_list"].split(",")]
exercise["hosts_list"] = ",".join(map(str, hosts))
elif exercise["method"] != "vlsm":
exercise["number"] = max(2, exercise["number"] // 2)
print(f"⚠️ Could not validate exercise {exercise['exercise_number']} after {max_attempts} attempts")
return exercise
async def fix_exercise(self, exercise: Dict, error: str) -> Dict:
"""Fix exercise based on validation error"""
print(f"Attempting to fix exercise {exercise['exercise_number']}: {error}")
# Keep track of what was changed to update the scenario
changes_made = []
original_hosts = exercise.get("hosts_list", "")
original_number = exercise.get("number", 0)
original_network = exercise.get("network", "")
# Simple heuristic fixes
if "too many" in error.lower() or "cannot allocate" in error.lower():
if exercise["method"] == "vlsm" and exercise["hosts_list"]:
# Reduce host requirements
hosts = [max(1, int(h)//2) for h in exercise["hosts_list"].split(",")]
exercise["hosts_list"] = ",".join(map(str, hosts))
print(f"Reduced VLSM hosts to: {exercise['hosts_list']}")
changes_made.append("hosts_reduced")
elif exercise["method"] != "vlsm":
# Reduce number of subnets
exercise["number"] = max(2, exercise["number"] // 2)
print(f"Reduced subnet count to: {exercise['number']}")
changes_made.append("subnets_reduced")
elif "invalid" in error.lower():
# Try changing network to a larger one
if "/24" in exercise["network"]:
exercise["network"] = exercise["network"].replace("/24", "/22")
elif "/22" in exercise["network"]:
exercise["network"] = exercise["network"].replace("/22", "/20")
print(f"Changed network to: {exercise['network']}")
changes_made.append("network_expanded")
# Update scenario and requirements to reflect the changes
if changes_made:
exercise = await self.update_exercise_description(exercise, changes_made, original_hosts, original_number, original_network)
return exercise
async def update_exercise_description(self, exercise: Dict, changes_made: List[str], original_hosts: str, original_number: int, original_network: str) -> Dict:
"""Update exercise scenario and requirements to reflect corrections made using LLM"""
try:
print(f"Updating exercise description for changes: {changes_made}")
# Extract current values
current_network = exercise.get("network", "")
current_method = exercise.get("method", "")
original_scenario = exercise.get("scenario", "")
original_title = exercise.get("title", "")
# Detect language from existing scenario
detected_language = "English" # default
if "empresa" in original_scenario.lower() or "departamento" in original_scenario.lower() or "universidad" in original_scenario.lower():
detected_language = "Spanish"
elif "entreprise" in original_scenario.lower() or "département" in original_scenario.lower() or "université" in original_scenario.lower():
detected_language = "French"
elif "unternehmen" in original_scenario.lower() or "abteilung" in original_scenario.lower() or "universität" in original_scenario.lower():
detected_language = "German"
# Use intelligent number substitution instead of LLM rewriting
if "hosts_reduced" in changes_made and current_method == "vlsm":
current_hosts = exercise["hosts_list"]
# Combine scenario and requirements for complete text processing
original_requirements = exercise.get("requirements", "")
full_text = f"{original_scenario} {original_requirements}".strip()
# Intelligent number replacement in the complete text
updated_full_text = self.smart_replace_host_numbers(full_text, exercise["hosts_list"])
# Simple approach: put everything in scenario and clear requirements to avoid duplication
exercise["scenario"] = updated_full_text
exercise["requirements"] = ""
print(f"Updated scenario using smart substitution: {exercise['scenario'][:100]}...")
if exercise.get("requirements"):
print(f"Updated requirements: {exercise['requirements'][:100]}...")
elif "subnets_reduced" in changes_made and current_method != "vlsm":
current_number = exercise["number"]
# Simple update for non-VLSM (less complex)
# Simple replacement for subnet count
exercise["scenario"] = original_scenario.replace(str(original_number), str(current_number))
print(f"Updated scenario to reflect corrected subnet count: {current_number}")
elif "network_expanded" in changes_made:
# Simple network replacement
exercise["scenario"] = exercise["scenario"].replace(original_network, current_network)
print(f"Updated scenario to reflect expanded network: {current_network}")
except Exception as e:
print(f"Error updating exercise description: {e}")
# Fallback to original scenario if LLM fails
if "scenario" not in exercise or not exercise["scenario"]:
exercise["scenario"] = original_scenario
return exercise
def smart_replace_host_numbers(self, scenario: str, new_hosts: str) -> str:
"""Replace host numbers by matching largest to largest, avoiding IP addresses"""
import re
print(f"Smart replacement input - FULL Scenario: {scenario}")
print(f"New hosts: {new_hosts}")
# Convert new hosts to list and sort descending (largest first)
new_host_list = sorted([int(h) for h in new_hosts.split(",")], reverse=True)
print(f"New hosts sorted (largest first): {new_host_list}")
# First, temporarily replace IP addresses to protect them
ip_pattern = r'\d+\.\d+\.\d+\.\d+(?:/\d+)?' # Match IP addresses with optional CIDR
ip_matches = re.findall(ip_pattern, scenario)
protected_scenario = scenario
ip_placeholders = {}
for i, ip in enumerate(ip_matches):
placeholder = f"__IP_PLACEHOLDER_{i}__"
protected_scenario = protected_scenario.replace(ip, placeholder, 1)
ip_placeholders[placeholder] = ip
print(f"Protected IP: {ip} -> {placeholder}")
# Find all numbers that have spaces before and after (standalone numbers)
# This avoids IP addresses and other connected numbers
number_pattern = r'\s(\d+)\s'
number_matches = re.findall(number_pattern, protected_scenario)
print(f"All numbers found: {number_matches}")
# Convert to integers, remove duplicates, and sort descending
unique_numbers = list(set([int(n) for n in number_matches if n.isdigit()]))
old_numbers = sorted(unique_numbers, reverse=True)
print(f"Old numbers sorted (largest first): {old_numbers}")
# Match largest old number with largest new number
updated_scenario = protected_scenario
replacements_made = 0
for i, old_num in enumerate(old_numbers):
if i < len(new_host_list):
new_num = new_host_list[i]
# Try different replacement patterns in order of specificity
replacement_patterns = [
(f"{old_num} hosts", f"{new_num} hosts"),
(f"({old_num} hosts", f"({new_num} hosts"),
(f" {old_num} ", f" {new_num} "),
(str(old_num), str(new_num)) # Last resort: direct number replacement
]
replaced = False
for old_pattern, new_pattern in replacement_patterns:
if old_pattern in updated_scenario and not replaced:
# Count occurrences to be careful
count = updated_scenario.count(old_pattern)
if count == 1: # Only replace if there's exactly one occurrence
updated_scenario = updated_scenario.replace(old_pattern, new_pattern)
print(f"Replaced '{old_pattern}' with '{new_pattern}'")
replacements_made += 1
replaced = True
break
elif count > 1:
# Replace only the first occurrence
updated_scenario = updated_scenario.replace(old_pattern, new_pattern, 1)
print(f"Replaced first occurrence of '{old_pattern}' with '{new_pattern}' ({count} total found)")
replacements_made += 1
replaced = True
break
if not replaced:
print(f"Could not replace {old_num}")
else:
print(f"No replacement value for {old_num}")
# Restore IP addresses
for placeholder, ip in ip_placeholders.items():
updated_scenario = updated_scenario.replace(placeholder, ip)
print(f"Restored IP: {placeholder} -> {ip}")
print(f"Made {replacements_made} total replacements")
print(f"Final result: {updated_scenario}")
return updated_scenario
async def create_zip_with_images(self, markdown_content: str, image_urls: List[str]) -> str:
"""Create ZIP file with markdown and downloaded images"""
try:
# Create temporary directory for files
temp_dir = tempfile.mkdtemp()
# Download images and update markdown
updated_markdown = markdown_content
image_files = []
for i, image_url in enumerate(image_urls, 1):
try:
print(f"Downloading image {i}: {image_url}")
response = requests.get(image_url, timeout=30)
response.raise_for_status()
# Determine file extension
if image_url.lower().endswith('.svg'):
ext = '.svg'
else:
ext = '.png'
# Create local filename
image_filename = f"diagram_{i}{ext}"
image_path = Path(temp_dir) / image_filename
# Save image
with open(image_path, 'wb') as f:
f.write(response.content)
# Update markdown to reference local file
updated_markdown = updated_markdown.replace(image_url, image_filename)
image_files.append(image_filename)
print(f"Downloaded: {image_filename}")
except Exception as img_error:
print(f"Failed to download image {i}: {img_error}")
# Save updated markdown
markdown_filename = "exercises.md"
markdown_path = Path(temp_dir) / markdown_filename
with open(markdown_path, 'w', encoding='utf-8') as f:
f.write(updated_markdown)
# Create ZIP file
zip_filename = tempfile.NamedTemporaryFile(suffix=".zip", delete=False)
zip_path = zip_filename.name
zip_filename.close()
with zipfile.ZipFile(zip_path, 'w', zipfile.ZIP_DEFLATED) as zipf:
# Add markdown file
zipf.write(markdown_path, markdown_filename)
# Add image files
for image_file in image_files:
image_path = Path(temp_dir) / image_file
if image_path.exists():
zipf.write(image_path, image_file)
print(f"Created ZIP: {zip_path}")
# Clean up temp directory
import shutil
shutil.rmtree(temp_dir)
return zip_path
except Exception as e:
print(f"Error creating ZIP: {e}")
return ""
async def generate_diagram_for_exercise(self, exercise: Dict) -> tuple[str, str]:
"""Generate network diagram for exercise using requested hosts, not optimal calculated hosts"""
"""Returns tuple of (markdown_for_display, image_url_for_download)"""
try:
print(f"Generating diagram for exercise {exercise['exercise_number']}")
# Use the original requested hosts from the exercise, not the optimal calculated ones
if exercise["method"] == "vlsm":
# For VLSM, use the original hosts_list directly
hosts_list = exercise["hosts_list"]
else:
# For max_subnets and max_hosts_per_subnet, we need to extract the original requirement
# Parse the requirements to find the requested host count
requirements = exercise.get("requirements", "").lower()
hosts_requested = None
# Look for host requirements in the requirements text
import re
host_matches = re.findall(r'(\d+)\s*hosts?', requirements) if requirements else []
if host_matches:
# Use the first host count found
hosts_requested = int(host_matches[0])
else:
# Fallback: look in scenario text
scenario = exercise.get("scenario", "").lower()
host_matches = re.findall(r'(\d+)\s*(?:hosts?|dispositivos?|devices?)', scenario) if scenario else []
if host_matches:
hosts_requested = int(host_matches[0])
if hosts_requested:
# Create host list with the requested count for each subnet
num_subnets = exercise.get("number", 2)
hosts_list = ",".join([str(hosts_requested)] * num_subnets)
print(f"Using requested hosts: {hosts_list} instead of optimal calculation")
else:
print("Could not find requested host count, falling back to calculated optimal")
# Fallback to calculated hosts if we can't parse the requirement
tool_args = {
"network": exercise["network"],
"division_type": exercise["method"],
"number": str(exercise["number"]),
"hosts_per_subnet": ""
}
calc_result = await self.call_mcp_tool("ipmentor_subnet_calculator", tool_args)
if "error" in calc_result or "subnets" not in calc_result:
return "![Diagram generation failed]"
hosts_per_subnet = [subnet["hosts"] for subnet in calc_result["subnets"]]
hosts_list = ",".join(map(str, hosts_per_subnet))
# Generate diagram
diagram_args = {
"ip_network": exercise["network"],
"hosts_list": hosts_list,
"use_svg": False # Use PNG for better PDF compatibility
}
diagram_result = await self.call_mcp_tool("ipmentor_generate_diagram", diagram_args)
if "error" in diagram_result:
return "![Diagram generation failed]"
image_path = diagram_result.get("image_path", "")
if image_path:
return f"", image_path
else:
return "![Diagram not available]", ""
except Exception as e:
print(f"Error generating diagram: {e}")
return "![Diagram generation error]", ""
async def generate_complete_exercises(self, num_exercises: int, difficulty: str, language: str, template: str, progress=None) -> tuple[str, str, str]:
"""Generate, validate and create complete exercises with diagrams"""
try:
print(f"=== Starting exercise generation ===")
print(f"Inputs: {num_exercises} exercises, {difficulty}, {language}")
print(f"Template length: {len(template) if template else 0}")
# Connect to IPMentor if not connected
if self.connection_status != "Connected":
if progress is not None:
progress(0.4, desc="Connecting to IPMentor...")
connect_result = await self.connect_to_ipmentor()
if self.connection_status != "Connected":
return f"❌ Failed to connect to IPMentor: {connect_result}", "", ""
# Generate exercises with LLM
if progress is not None:
progress(0.5, desc="Generating exercises with AI...")
print(f"Generating {num_exercises} exercises with {difficulty} difficulty in {language}")
try:
exercises = self.generate_exercises_with_llm(num_exercises, difficulty, language, template)
print(f"LLM returned {len(exercises) if exercises else 0} exercises")
except Exception as llm_error:
print(f"LLM generation failed: {llm_error}")
import traceback
print(f"LLM error traceback: {traceback.format_exc()}")
return f"❌ LLM generation failed: {str(llm_error)}", "", ""
if not exercises:
print("No exercises returned from LLM")
return "❌ Failed to generate exercises", "", ""
# Validate and fix each exercise
if progress is not None:
progress(0.6, desc="Validating exercises...")
validated_exercises = []
for i, exercise in enumerate(exercises):
try:
if progress is not None:
progress(0.6 + (0.2 * i / len(exercises)), desc=f"Validating exercise {i+1}/{len(exercises)}...")
validated_exercise = await self.validate_and_fix_exercise(exercise)
if validated_exercise:
validated_exercises.append(validated_exercise)
except Exception as validation_error:
print(f"Error validating exercise {i+1}: {validation_error}")
# Still add the original exercise if validation fails completely
validated_exercises.append(exercise)
# Generate diagrams and create markdown content
if progress is not None:
progress(0.8, desc="Generating network diagrams...")
markdown_content, image_urls = await self.create_markdown_content_with_diagrams(validated_exercises, language, progress)
# Generate PDF
if progress is not None:
progress(0.95, desc="Creating PDF document...")
with tempfile.NamedTemporaryFile(suffix=".pdf", delete=False) as tmp_pdf:
pdf_path = tmp_pdf.name
try:
markdown_to_pdf(markdown_content, pdf_path)
pdf_success = True
except Exception as e:
print(f"PDF generation failed: {e}")
pdf_success = False
pdf_path = ""
# Create ZIP file with markdown and images
zip_path = ""
if markdown_content and not markdown_content.startswith("❌"):
try:
zip_path = await self.create_zip_with_images(markdown_content, image_urls)
except Exception as zip_error:
print(f"ZIP creation failed: {zip_error}")
return markdown_content, pdf_path if pdf_success else "", zip_path
except Exception as e:
import traceback
full_traceback = traceback.format_exc()
print(f"FULL ERROR TRACEBACK: {full_traceback}")
return f"❌ Error generating exercises: {str(e)}", "", ""
async def create_markdown_content_with_diagrams(self, exercises: List[Dict], language: str, progress=None) -> str:
"""Create markdown content from validated exercises with actual diagrams"""
# Title and field labels in the selected language
titles = {
"English": "# Subnetting Exercises",
"Spanish": "# Ejercicios de Subnetting",
"French": "# Exercices de Sous-réseaux",
"German": "# Subnetting-Übungen"
}
# Field labels and branding by language
field_labels = {
"English": {
"powered_by": "Powered by [IPMentor](https://github.com/DavidLMS/ipmentor)",
"exercise": "Exercise",
"scenario": "Scenario",
"network": "Network",
"requirements": "Requirements",
"diagram": "Network Diagram"
},
"Spanish": {
"powered_by": "Ejercicios generados con las herramientas de [IPMentor](https://github.com/DavidLMS/ipmentor)",
"exercise": "Ejercicio",
"scenario": "Escenario",
"network": "Red",
"requirements": "Requisitos",
"diagram": "Diagrama de Red"
},
"French": {
"powered_by": "Exercices générés avec les outils d'[IPMentor](https://github.com/DavidLMS/ipmentor)",
"exercise": "Exercice",
"scenario": "Scénario",
"network": "Réseau",
"requirements": "Exigences",
"diagram": "Diagramme de Réseau"
},
"German": {
"powered_by": "Übungen erstellt mit den Tools von [IPMentor](https://github.com/DavidLMS/ipmentor)",
"exercise": "Übung",
"scenario": "Szenario",
"network": "Netzwerk",
"requirements": "Anforderungen",
"diagram": "Netzwerk-Diagramm"
}
}
labels = field_labels.get(language, field_labels["English"])
markdown_lines = [
titles.get(language, titles["English"]),
"",
f"*{labels['powered_by']}*",
"",
"---",
""
]
image_urls = []
for i, exercise in enumerate(exercises, 1):
if progress is not None:
progress(0.8 + (0.1 * i / len(exercises)), desc=f"Generating diagram for exercise {i}/{len(exercises)}...")
print(f"Generating diagram for exercise {i}")
# Generate the actual diagram
diagram_markdown, image_url = await self.generate_diagram_for_exercise(exercise)
if image_url:
image_urls.append(image_url)
# Create a unified exercise statement instead of fragmented fields
scenario = exercise.get('scenario', '')
network = exercise.get('network', '')
requirements = exercise.get('requirements', '')
# Combine scenario and requirements into a single cohesive statement
if scenario and requirements:
unified_statement = f"{scenario} {requirements}"
elif scenario:
unified_statement = scenario
elif requirements:
unified_statement = requirements
else:
unified_statement = "N/A"
# Add network information to the statement if not already included
if network and network not in unified_statement:
if language == "Spanish":
unified_statement += f" Tienen asignado el direccionamiento {network}."
elif language == "French":
unified_statement += f" Ils ont l'adressage {network} assigné."
elif language == "German":
unified_statement += f" Sie haben die Adressierung {network} zugewiesen."
else:
unified_statement += f" They have been assigned the network {network}."
# Create fallback title
fallback_title = f"{labels['exercise']} {i}"
exercise_title = exercise.get('title', fallback_title)
markdown_lines.extend([
f"## {labels['exercise']} {i}: {exercise_title}",
"",
unified_statement,
"",
diagram_markdown,
"",
"---",
""
])
return "\n".join(markdown_lines), image_urls
# Global instance
generator = ExerciseGenerator()
# GRADIO INTERFACE
async def generate_exercises_async(num_exercises, difficulty, language, template, progress=None):
"""Async wrapper for exercise generation"""
return await generator.generate_complete_exercises(num_exercises, difficulty, language, template, progress)
def generate_exercises(num_exercises, difficulty, language, template, progress=None):
"""Generate exercises with validation and diagrams"""
try:
# Validate inputs
if not isinstance(num_exercises, int) or num_exercises <= 0:
return "❌ Error: Invalid number of exercises", None
if not language or language not in ["English", "Spanish", "French", "German"]:
return "❌ Error: Invalid language selection", None
if not difficulty or difficulty not in ["easy", "medium", "difficult"]:
return "❌ Error: Invalid difficulty level", None
# Run async function
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
try:
if progress is not None:
progress(0.3, desc="Connecting to IPMentor...")
markdown_content, pdf_path, zip_path = loop.run_until_complete(
generate_exercises_async(num_exercises, difficulty, language, template, progress)
)
finally:
loop.close()
return markdown_content, pdf_path if pdf_path else None, zip_path if zip_path else None
except Exception as e:
import traceback
error_msg = f"❌ Error: {str(e)}"
print(f"Full error traceback: {traceback.format_exc()}")
return error_msg, None, None
def create_interface():
"""Create the Gradio interface"""
with gr.Blocks(title="IPMentor Exercise Generator") as app:
# Header
gr.Image("https://huggingface.co/spaces/davidlms/ipmentor/resolve/main/assets/header.png", show_label=False, interactive=False, container=False, height=80)
gr.Markdown("""
# Subnetting Exercise Generator
Generate validated IPv4 subnetting exercises automatically. The agentic system uses AI to create realistic scenarios
and validates each exercise using [IPMentor](https://agents-mcp-hackathon-ipmentor.hf.space)'s calculation tools with MCP and Mistral Medium 3 as LLM Client.
""")
with gr.Row():
with gr.Column(scale=1):
# Input controls
gr.Markdown("### Exercise Configuration")
num_exercises = gr.Dropdown(
choices=[1, 2, 3, 4, 5],
value=3,
label="Number of Exercises",
)
difficulty = gr.Radio(
choices=["easy", "medium", "difficult"],
value="medium",
label="Difficulty Level"
)
language = gr.Dropdown(
choices=["English", "Spanish", "French", "German"],
value="English",
label="Language"
)
template = gr.Textbox(
label="Exercise Template (Optional)",
value=DEFAULT_TEMPLATES["English"],
lines=3,
info="Custom template for exercise scenarios. Updates automatically based on language selection.",
visible=False
)
generate_btn = gr.Button(
"🎯 Generate Exercises",
variant="primary",
size="lg"
)
with gr.Column(scale=2):
# Output area
gr.Markdown("### Generated Exercises")
markdown_output = gr.Markdown(
value="*Click 'Generate Exercises'*",
label="Exercise Content"
)
with gr.Row():
pdf_output = gr.File(
label="Download PDF",
visible=False
)
zip_output = gr.File(
label="Download ZIP (Markdown + Images)",
visible=False
)
# Event handlers
def update_template(language):
"""Update template based on selected language"""
return DEFAULT_TEMPLATES.get(language, DEFAULT_TEMPLATES["English"])
def handle_generation(num_ex, diff, lang, templ, progress=gr.Progress()):
progress(0, desc="Starting exercise generation...")
progress(0.2, desc="Generating realistic scenarios...")
markdown, pdf, zip_file = generate_exercises(num_ex, diff, lang, templ, progress)
progress(1.0, desc="Complete!")
pdf_file = gr.File(value=pdf, visible=True) if pdf else gr.File(visible=False)
zip_file_ui = gr.File(value=zip_file, visible=True) if zip_file else gr.File(visible=False)
return markdown, pdf_file, zip_file_ui
# Update template when language changes
language.change(
fn=update_template,
inputs=[language],
outputs=[template]
)
generate_btn.click(
fn=handle_generation,
inputs=[num_exercises, difficulty, language, template],
outputs=[markdown_output, pdf_output, zip_output],
show_progress=True
)
return app
# MAIN APPLICATION
if __name__ == "__main__":
# Check environment variables
if not os.getenv("OPENROUTER_API_KEY"):
print("⚠️ Warning: OPENROUTER_API_KEY not found. Please configure it in your .env file")
print(" Get your API key from: https://openrouter.ai/")
# Create and launch interface
interface = create_interface()
interface.launch(
share=False
) |