File size: 16,675 Bytes
8a9039a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 |
"""
ContentGuardian - AI-Powered Content Audit Agent
China · Simplified Chinese · Hanyu Xinxie Style · AI-Driven Version
Real AI content analysis with SVG visualization
"""
import gradio as gr
import asyncio
import aiohttp
import json
import os
import datetime
from typing import Dict, List
# AI Client for content analysis
class AIContentAnalyzer:
def __init__(self):
self.api_key = os.getenv("SILICONFLOW_API_KEY", "sk-your-api-key-here")
self.base_url = "https://api.siliconflow.cn/v1/chat/completions"
self.model = "Qwen/Qwen2.5-7B-Instruct"
async def analyze_content(self, text: str, keywords: List[str] = None) -> Dict:
"""AI-powered content analysis"""
keywords_str = ", ".join(keywords) if keywords else "无"
prompt = f"""
你是专业的内容审核专家,请对以下文本进行全面审核分析:
文本内容:{text}
关键词:{keywords_str}
请从以下维度进行分析:
1. 错别字检测:识别文本中的拼写错误和用词不当
2. 违规内容:检测不当言论、违法违规表述
3. 虚假内容:识别可能的虚假信息和夸大宣传
4. 不当广告用语:检测违反广告法的用词
5. 关键词分析:分析指定关键词的使用情况
请以JSON格式返回分析结果:
{{
"typos": [
{{"original": "错误词", "correct": "正确词", "reason": "错误原因"}}
],
"violations": [
{{"content": "违规内容", "type": "违规类型", "suggestion": "修改建议"}}
],
"fake_content": [
{{"content": "虚假内容", "type": "虚假类型", "suggestion": "修改建议"}}
],
"inappropriate_ads": [
{{"word": "不当用词", "reason": "违规原因", "suggestion": "替代建议"}}
],
"keywords_analysis": [
{{"keyword": "关键词", "frequency": 次数, "context": "使用语境", "assessment": "使用评价"}}
],
"overall_assessment": {{
"risk_level": "低/中/高",
"total_issues": 问题总数,
"main_concerns": ["主要问题1", "主要问题2"],
"recommendations": ["建议1", "建议2"]
}}
}}
"""
try:
headers = {
"Authorization": f"Bearer {self.api_key}",
"Content-Type": "application/json"
}
data = {
"model": self.model,
"messages": [
{"role": "system", "content": "你是专业的内容审核专家,擅长识别各类内容问题并提供专业建议。"},
{"role": "user", "content": prompt}
],
"temperature": 0.1,
"max_tokens": 2000
}
async with aiohttp.ClientSession() as session:
async with session.post(self.base_url, headers=headers, json=data) as response:
if response.status == 200:
result = await response.json()
ai_response = result["choices"][0]["message"]["content"]
# 尝试解析JSON
try:
# 清理AI返回的内容
if "```json" in ai_response:
ai_response = ai_response.split("```json")[1].split("```")[0]
elif "```" in ai_response:
ai_response = ai_response.split("```")[1].split("```")[0]
analysis_result = json.loads(ai_response.strip())
return analysis_result
except json.JSONDecodeError:
# 如果JSON解析失败,返回基础分析
return self._create_fallback_analysis(text, keywords)
else:
return self._create_fallback_analysis(text, keywords)
except Exception as e:
print(f"AI analysis error: {e}")
return self._create_fallback_analysis(text, keywords)
def _create_fallback_analysis(self, text: str, keywords: List[str] = None) -> Dict:
"""备用分析方法"""
# 简单的关键词检测作为备用
inappropriate_words = ["绝对", "完全", "100%", "第一", "最好", "立即", "马上"]
found_inappropriate = [word for word in inappropriate_words if word in text]
return {
"typos": [],
"violations": [],
"fake_content": [],
"inappropriate_ads": [{"word": word, "reason": "可能违反广告法", "suggestion": "使用相对性表述"} for word in found_inappropriate],
"keywords_analysis": [{"keyword": kw, "frequency": text.count(kw), "context": "文本中", "assessment": "正常使用"} for kw in (keywords or []) if kw in text],
"overall_assessment": {
"risk_level": "中" if found_inappropriate else "低",
"total_issues": len(found_inappropriate),
"main_concerns": ["广告用语不当"] if found_inappropriate else [],
"recommendations": ["修改绝对化表述"] if found_inappropriate else ["内容表述规范"]
}
}
# 全局AI分析器
ai_analyzer = AIContentAnalyzer()
def generate_hanyu_xinxie_cards(analysis_result: Dict, original_text: str) -> str:
"""生成汉语新解风格的SVG卡片"""
overall = analysis_result.get("overall_assessment", {})
total_issues = overall.get("total_issues", 0)
risk_level = overall.get("risk_level", "低")
# 莫兰迪色系配色
colors = {
"primary": "#B6B5A7", # 莫兰迪灰褐色
"secondary": "#9A8F8F", # 莫兰迪灰棕色
"accent": "#C5B4A0", # 莫兰迪淡棕色
"background": "#F2EDE9", # 莫兰迪浅米色
"text": "#5B5B5B", # 莫兰迪深灰色
"light_text": "#8C8C8C", # 莫兰迪中灰色
"divider": "#D1CBC3" # 莫兰迪浅灰色
}
# 根据风险等级调整颜色
if risk_level == "高":
colors["secondary"] = "#B85450" # 深红色
colors["accent"] = "#D4776B" # 浅红色
elif risk_level == "中":
colors["secondary"] = "#C4965A" # 橙色
colors["accent"] = "#D4A574" # 浅橙色
# 生成主要摘要卡片
main_card = f"""
<div style="
display: flex;
justify-content: center;
padding: 20px;
background: linear-gradient(135deg, #E8E3DE 0%, #F2EDE9 100%);
border-radius: 15px;
font-family: 'Microsoft YaHei', 'Noto Sans SC', sans-serif;
margin-bottom: 20px;
">
<div style="
width: 350px;
background-color: {colors['background']};
border-radius: 20px;
box-shadow: 0 20px 40px rgba(0,0,0,0.1);
overflow: hidden;
position: relative;
">
<!-- 标题区域 -->
<div style="
background-color: {colors['secondary']};
color: {colors['background']};
padding: 20px;
text-align: left;
">
<h1 style="font-size: 20px; margin: 0; font-weight: 700;">🛡️ AI内容审核报告</h1>
<p style="font-size: 12px; margin: 5px 0 0 0; opacity: 0.9;">中国·简体中文·汉语新解风格</p>
</div>
<!-- 内容区域 -->
<div style="padding: 25px 20px;">
<!-- 主要统计 -->
<div style="text-align: left; margin-bottom: 20px;">
<div style="
font-size: 36px;
color: {colors['text']};
margin-bottom: 8px;
font-weight: bold;
position: relative;
">
{total_issues} 处问题
<div style="
position: absolute;
left: 0;
bottom: -4px;
width: 60px;
height: 3px;
background-color: {colors['accent']};
"></div>
</div>
<div style="
font-size: 16px;
color: {colors['light_text']};
margin: 12px 0;
">风险等级: {risk_level}</div>
</div>
<!-- 分隔线 -->
<div style="
width: 100%;
height: 1px;
background-color: {colors['divider']};
margin: 20px 0;
"></div>
<!-- AI分析结果 -->
<div style="
font-size: 14px;
line-height: 1.6;
text-align: left;
">
<div style="
padding-left: 15px;
border-left: 3px solid {colors['accent']};
">"""
# 添加具体问题类型
if analysis_result.get("typos"):
main_card += f'<p style="margin: 8px 0; color: {colors["text"]};">• 错别字问题: {len(analysis_result["typos"])} 处</p>'
if analysis_result.get("violations"):
main_card += f'<p style="margin: 8px 0; color: {colors["text"]};">• 违规内容: {len(analysis_result["violations"])} 处</p>'
if analysis_result.get("fake_content"):
main_card += f'<p style="margin: 8px 0; color: {colors["text"]};">• 虚假内容: {len(analysis_result["fake_content"])} 处</p>'
if analysis_result.get("inappropriate_ads"):
main_card += f'<p style="margin: 8px 0; color: {colors["text"]};">• 不当广告用语: {len(analysis_result["inappropriate_ads"])} 处</p>'
if analysis_result.get("keywords_analysis"):
main_card += f'<p style="margin: 8px 0; color: {colors["text"]};">• 关键词分析: {len(analysis_result["keywords_analysis"])} 个</p>'
if total_issues == 0:
main_card += f'<p style="margin: 8px 0; color: {colors["light_text"]};">✅ 未发现明显问题</p>'
main_card += f"""
</div>
</div>
<!-- AI建议 -->
<div style="
margin-top: 20px;
padding: 15px;
background-color: rgba(255,255,255,0.5);
border-radius: 10px;
border-left: 4px solid {colors['accent']};
">
<h4 style="margin: 0 0 10px 0; color: {colors['text']}; font-size: 14px;">🤖 AI建议</h4>"""
recommendations = overall.get("recommendations", ["内容表述规范"])
for rec in recommendations[:2]: # 最多显示2个建议
main_card += f'<p style="margin: 5px 0; color: {colors["light_text"]}; font-size: 13px;">• {rec}</p>'
main_card += f"""
</div>
<!-- 中式印章风格装饰 -->
<div style="
text-align: center;
margin-top: 25px;
padding: 10px;
border: 2px solid {colors['accent']};
border-radius: 50%;
width: 70px;
height: 70px;
margin-left: auto;
margin-right: auto;
display: flex;
align-items: center;
justify-content: center;
">
<span style="
font-size: 18px;
color: {colors['secondary']};
font-weight: bold;
">AI审核</span>
</div>
</div>
<!-- 背景装饰文字 -->
<div style="
position: absolute;
font-size: 120px;
color: rgba(182, 181, 167, 0.05);
top: 50%;
left: 50%;
transform: translate(-50%, -50%);
font-weight: bold;
pointer-events: none;
z-index: 0;
">AI</div>
</div>
</div>
"""
return main_card
def generate_error_card(error_msg: str) -> str:
"""生成错误信息卡片"""
return f"""
<div style="
display: flex;
justify-content: center;
padding: 20px;
background: linear-gradient(135deg, #E8E3DE 0%, #F2EDE9 100%);
border-radius: 15px;
font-family: 'Microsoft YaHei', sans-serif;
">
<div style="
width: 350px;
background-color: #F2EDE9;
border-radius: 20px;
box-shadow: 0 20px 40px rgba(0,0,0,0.1);
padding: 30px;
text-align: center;
">
<h2 style="color: #B85450; margin-bottom: 15px;">⚠️ 分析出错</h2>
<p style="color: #5B5B5B; margin-bottom: 20px;">AI分析过程中遇到问题:</p>
<div style="
background-color: rgba(184, 84, 80, 0.1);
padding: 15px;
border-radius: 10px;
border-left: 4px solid #B85450;
text-align: left;
">
<code style="color: #B85450; font-size: 12px;">{error_msg}</code>
</div>
<p style="color: #8C8C8C; margin-top: 15px; font-size: 14px;">请稍后重试或检查网络连接</p>
</div>
</div>
"""
def comprehensive_text_audit(text, keywords=""):
"""
AI-powered comprehensive text audit with SVG visualization
"""
if not text.strip():
return "❌ Please enter text content"
# Parse keywords
keyword_list = [k.strip() for k in keywords.split(",") if k.strip()] if keywords else []
try:
# 使用异步事件循环进行AI分析
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
try:
# 执行AI分析
analysis_result = loop.run_until_complete(
ai_analyzer.analyze_content(text, keyword_list)
)
finally:
loop.close()
# 生成汉语新解风格的SVG卡片
svg_cards = generate_hanyu_xinxie_cards(analysis_result, text)
return svg_cards
except Exception as e:
print(f"Analysis error: {e}")
# 返回错误信息的SVG卡片
return generate_error_card(str(e))
# Create Gradio interface optimized for HF Spaces
demo = gr.Interface(
fn=comprehensive_text_audit,
inputs=[
gr.Textbox(
label="Text to Audit",
placeholder="Please enter the text content to be audited...",
lines=8
),
gr.Textbox(
label="Keywords (Optional)",
placeholder="Please enter keywords to mark, separated by commas",
lines=2
)
],
outputs=gr.HTML(
label="AI Audit Report"
),
title="🛡️ ContentGuardian - AI Content Audit Agent",
description="""
**China · Simplified Chinese · Hanyu Xinxie Style · AI-Driven Version**
This system uses real AI analysis to detect content issues and generates beautiful Hanyu Xinxie style cards.
Powered by advanced language models for intelligent content understanding.
**Key Features:**
- 🤖 AI-Powered Content Analysis
- 🔍 Intelligent Error Detection
- 📊 Beautiful SVG Card Visualization
- 🎨 Hanyu Xinxie Aesthetic Style
""",
examples=[
["This product is absolutely effective, completely side-effect free, the first brand! Buy immediately, instant results!", "product,effect"],
["Our product quality is very good, trustworthy, welcome to purchase.", "product,quality"],
["这款产品效果绝对好,完全无副作用,第一品牌!立即购买,马上见效!", "产品,效果"],
["Buy now, instant effect, 100% effective, absolutely satisfying!", "buy,effect"]
],
theme=gr.themes.Soft(),
allow_flagging="never"
)
if __name__ == "__main__":
demo.launch()
|