Spaces:
Sleeping
Sleeping
File size: 111,336 Bytes
dac7f95 550cbd3 dac7f95 da53044 dac7f95 da53044 dac7f95 da53044 c340d5b dac7f95 da53044 fc7e1b3 dac7f95 da53044 dac7f95 fc7e1b3 dac7f95 fc7e1b3 da53044 fc7e1b3 da53044 fc7e1b3 da53044 fc7e1b3 da53044 fc7e1b3 da53044 fc7e1b3 da53044 fc7e1b3 da53044 fc7e1b3 dac7f95 da53044 75eface c22fb35 75eface c22fb35 75eface c22fb35 75eface c22fb35 75eface c22fb35 75eface dac7f95 c22fb35 da53044 c22fb35 da53044 c22fb35 da53044 dac7f95 da53044 dac7f95 da53044 dac7f95 da53044 dac7f95 da53044 c22fb35 da53044 c22fb35 da53044 c22fb35 da53044 c22fb35 da53044 c340d5b da53044 c22fb35 da53044 c22fb35 da53044 c340d5b da53044 c22fb35 da53044 c22fb35 c340d5b da53044 c22fb35 da53044 c22fb35 da53044 dac7f95 fc7e1b3 da53044 c340d5b fc7e1b3 c22fb35 fc7e1b3 da53044 c340d5b fc7e1b3 c22fb35 fc7e1b3 da53044 c340d5b fc7e1b3 c22fb35 fc7e1b3 da53044 c340d5b fc7e1b3 c22fb35 fc7e1b3 da53044 c340d5b fc7e1b3 c340d5b fc7e1b3 da53044 c340d5b da53044 fc7e1b3 dac7f95 da53044 dac7f95 da53044 dac7f95 da53044 dac7f95 c22fb35 c340d5b c22fb35 c340d5b c22fb35 4961714 c22fb35 4961714 c22fb35 eca0010 c22fb35 35bafdf a381baf 75eface 35bafdf 75eface 35bafdf 75eface 35bafdf d18906c 35bafdf d18906c 75eface 35bafdf a381baf 35bafdf d18906c 35bafdf a381baf 35bafdf d18906c 35bafdf a381baf 35bafdf a381baf 35bafdf a381baf bde9fd4 a381baf bde9fd4 a381baf bde9fd4 a381baf bde9fd4 a381baf bde9fd4 a381baf 35bafdf bde9fd4 35bafdf 4961714 a381baf 531f1a3 a381baf 531f1a3 d18906c a381baf d18906c 531f1a3 a381baf 531f1a3 a381baf bde9fd4 a381baf bde9fd4 a381baf bde9fd4 a381baf bde9fd4 9577eaa bde9fd4 a381baf be9e986 a381baf 9577eaa a381baf 9577eaa be9e986 a381baf 9577eaa a381baf bde9fd4 9577eaa 35bafdf d18906c 531f1a3 75eface 531f1a3 75eface 531f1a3 4961714 531f1a3 4961714 531f1a3 4961714 531f1a3 4961714 c22fb35 4961714 c22fb35 4961714 c22fb35 4961714 c22fb35 4961714 75eface 4961714 c22fb35 4961714 c22fb35 4961714 c22fb35 4961714 c22fb35 4961714 c22fb35 75eface 4961714 eca0010 4961714 eca0010 4961714 eca0010 4961714 eca0010 4961714 eca0010 75eface 4961714 75eface 4961714 75eface 4961714 75eface 4961714 75eface 4961714 75eface 550cbd3 75eface 550cbd3 75eface 550cbd3 75eface c22fb35 9577eaa 75eface 9577eaa 75eface 9f4649d c340d5b 9f4649d a381baf 9f4649d 75eface 9f4649d 75eface 35bafdf 75eface 8d6823b 75eface 35bafdf 75eface 9f4649d 35bafdf 75eface 9577eaa 35bafdf 75eface 8d6823b 75eface 8d6823b 75eface 8d6823b 75eface 8d6823b 75eface dac7f95 c557e31 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 |
"""
AdGuardian - AI-Powered Advertising Compliance Agent
Multi-Country · Multi-Language · Three-Stage Analysis · AI-Driven Version
Real AI advertising compliance analysis with professional visualization
"""
import gradio as gr
import asyncio
import aiohttp
import json
import os
import datetime
from typing import Dict, List
# AI Client for content analysis
class AIContentAnalyzer:
def __init__(self):
# SiliconFlow (测试用)
self.siliconflow_api_key = os.getenv("SILICONFLOW_API_KEY", "sk-your-api-key-here")
self.siliconflow_base_url = "https://api.siliconflow.cn/v1/chat/completions"
# Nebius (付费,效果更强)
self.nebius_api_key = os.getenv("NEBIUS_API_KEY", "your-nebius-api-key")
self.nebius_base_url = "https://api.studio.nebius.com/v1/chat/completions"
# 默认使用SiliconFlow的免费模型
self.model = "Qwen/Qwen3-8B"
self.api_key = self.siliconflow_api_key
self.base_url = self.siliconflow_base_url
def set_model(self, model: str):
"""设置模型并选择对应的API"""
self.model = model
# SiliconFlow模型
siliconflow_models = ["Qwen/Qwen3-8B"]
# Nebius模型
nebius_models = [
"deepseek-ai/DeepSeek-V3-0324",
"deepseek-ai/DeepSeek-R1-0528",
"Qwen/Qwen3-235B-A22B",
"google/gemma-3-27b-it"
]
if model in siliconflow_models:
self.api_key = self.siliconflow_api_key
self.base_url = self.siliconflow_base_url
elif model in nebius_models:
self.api_key = self.nebius_api_key
self.base_url = self.nebius_base_url
else:
# 默认使用SiliconFlow
self.api_key = self.siliconflow_api_key
self.base_url = self.siliconflow_base_url
async def analyze_content(self, text: str, keywords: List[str] = None) -> Dict:
"""AI-powered content analysis"""
keywords_str = ", ".join(keywords) if keywords else "无"
prompt = f"""
你是专业的内容审核专家,请对以下文本进行全面审核分析。
文本内容:{text}
关键词:{keywords_str}
参考示例案例的分析方式:
原始文本:生活需要妆,美丽不打烊!但凡精制的女生,都不会放弃自我管理。脸蛋只有一张,精制一点又何妨?用了这款特效面霜,我的肌肤就像剥了壳的鸡蛋一样立刻变白,色斑色块全部消失,仿佛皮肤吃了仙丹一样,一夜见效,完全无副作用,效果简直绝绝子!
分析结果:
- 错别字标注:"精制" 应为 "精致"(2处)
- 违规内容标注:1处违规(使用了"仙丹"这一封建迷信类用语,属于违反公序良俗类违规)
- 虚假内容标注:4处虚假,夸大及绝对化表述
1. "色斑全部消失" 表述过于绝对,不符合实际护肤效果
2. "一夜见效"属于夸大描述,不符合护肤效果
3. "立刻变白"使用过于夸张的比喻,且"立刻"一词使美白效果的描述过于绝对
4. "完全无副作用"不符合实际情况,任何护肤品都不能保证绝对无副作用
- 不当广告用语:绝绝子等网络用语不适合正式广告
请按照这个详细程度分析给定文本,以JSON格式返回:
{{
"typos": [
{{"original": "错误词", "correct": "正确词", "position": 位置, "reason": "详细错误原因"}}
],
"violations": [
{{"content": "具体违规内容", "type": "违规类型", "position": 位置, "reason": "详细违规原因", "suggestion": "具体修改建议"}}
],
"fake_content": [
{{"content": "具体虚假内容", "type": "虚假类型", "position": 位置, "reason": "详细分析原因", "suggestion": "具体修改建议"}}
],
"inappropriate_ads": [
{{"word": "不当用词", "position": 位置, "reason": "详细违规原因", "suggestion": "具体替代建议"}}
],
"keywords_analysis": [
{{"keyword": "关键词", "frequency": 次数, "positions": [位置列表], "context": "使用语境分析", "assessment": "使用评价"}}
],
"overall_assessment": {{
"risk_level": "低/中/高",
"total_issues": 问题总数,
"main_concerns": ["主要问题1", "主要问题2"],
"recommendations": ["具体建议1", "具体建议2"],
"revised_text": "修改后的文本建议"
}}
}}
要求:
1. 每个问题都要给出具体位置和详细分析
2. 建议要具体可操作
3. 分析要深入,不能只是简单列举
4. 必须包含修改后的文本建议
"""
try:
headers = {
"Authorization": f"Bearer {self.api_key}",
"Content-Type": "application/json"
}
data = {
"model": self.model,
"messages": [
{"role": "system", "content": "你是专业的内容审核专家,擅长识别各类内容问题并提供专业建议。"},
{"role": "user", "content": prompt}
],
"temperature": 0.1,
"max_tokens": 2000
}
async with aiohttp.ClientSession() as session:
async with session.post(self.base_url, headers=headers, json=data) as response:
if response.status == 200:
result = await response.json()
ai_response = result["choices"][0]["message"]["content"]
# 尝试解析JSON
try:
# 清理AI返回的内容
if "```json" in ai_response:
ai_response = ai_response.split("```json")[1].split("```")[0]
elif "```" in ai_response:
ai_response = ai_response.split("```")[1].split("```")[0]
analysis_result = json.loads(ai_response.strip())
return analysis_result
except json.JSONDecodeError:
# 如果JSON解析失败,返回基础分析
return self._create_fallback_analysis(text, keywords)
else:
return self._create_fallback_analysis(text, keywords)
except Exception as e:
print(f"AI analysis error: {e}")
return self._create_fallback_analysis(text, keywords)
async def analyze_content_with_options(self, text: str, keywords: List[str] = None, country: str = "中国", language: str = "简体中文") -> Dict:
"""带国家和语言选项的AI内容分析"""
keywords_str = ", ".join(keywords) if keywords else "无"
# 根据国家调整审核标准
country_standards = {
"China": "中国广告法和相关法规",
"USA": "美国FTC广告标准",
"UK": "英国ASA广告标准",
"Japan": "日本景品表示法",
"Korea": "韩国公正交易委员会标准",
"Singapore": "新加坡CCCS标准",
"Malaysia": "马来西亚广告标准",
"Other": "国际通用广告标准"
}
country_names = {
"China": "中国",
"USA": "美国",
"UK": "英国",
"Japan": "日本",
"Korea": "韩国",
"Singapore": "新加坡",
"Malaysia": "马来西亚",
"Other": "其他地区"
}
standard = country_standards.get(country, "国际通用广告标准")
country_cn = country_names.get(country, country)
prompt = f"""
你是专业的内容审核专家,请根据{country_cn}的{standard}对以下文本进行全面审核分析。
文本内容:{text}
关键词:{keywords_str}
审核地区:{country_cn}
回答语言:{language}
请按照{country_cn}的法规标准进行分析,并用{language}回答。
参考示例案例的分析方式:
原始文本:生活需要妆,美丽不打烊!但凡精制的女生,都不会放弃自我管理。脸蛋只有一张,精制一点又何妨?用了这款特效面霜,我的肌肤就像剥了壳的鸡蛋一样立刻变白,色斑色块全部消失,仿佛皮肤吃了仙丹一样,一夜见效,完全无副作用,效果简直绝绝子!
分析结果:
- 错别字标注:"精制" 应为 "精致"(2处)
- 违规内容标注:1处违规(使用了"仙丹"这一封建迷信类用语,属于违反公序良俗类违规)
- 虚假内容标注:4处虚假,夸大及绝对化表述
1. "色斑全部消失" 表述过于绝对,不符合实际护肤效果
2. "一夜见效"属于夸大描述,不符合护肤效果
3. "立刻变白"使用过于夸张的比喻,且"立刻"一词使美白效果的描述过于绝对
4. "完全无副作用"不符合实际情况,任何护肤品都不能保证绝对无副作用
- 不当广告用语:绝绝子等网络用语不适合正式广告
请按照这个详细程度分析给定文本,以JSON格式返回:
{{
"typos": [
{{"original": "错误词", "correct": "正确词", "position": 位置, "reason": "详细错误原因"}}
],
"violations": [
{{"content": "具体违规内容", "type": "违规类型", "position": 位置, "reason": "详细违规原因", "suggestion": "具体修改建议"}}
],
"fake_content": [
{{"content": "具体虚假内容", "type": "虚假类型", "position": 位置, "reason": "详细分析原因", "suggestion": "具体修改建议"}}
],
"inappropriate_ads": [
{{"word": "不当用词", "position": 位置, "reason": "详细违规原因", "suggestion": "具体替代建议"}}
],
"keywords_analysis": [
{{"keyword": "关键词", "frequency": 次数, "positions": [位置列表], "context": "使用语境分析", "assessment": "使用评价"}}
],
"overall_assessment": {{
"risk_level": "低/中/高",
"total_issues": 问题总数,
"main_concerns": ["主要问题1", "主要问题2"],
"recommendations": ["具体建议1", "具体建议2"],
"revised_text": "修改后的文本建议",
"country_specific_notes": "针对{country}的特殊说明"
}}
}}
要求:
1. 每个问题都要给出具体位置和详细分析
2. 建议要具体可操作
3. 分析要深入,不能只是简单列举
4. 必须包含修改后的文本建议
5. 考虑{country}的特殊法规要求
6. 使用{language}回答
"""
try:
headers = {
"Authorization": f"Bearer {self.api_key}",
"Content-Type": "application/json"
}
data = {
"model": self.model,
"messages": [
{"role": "system", "content": f"你是专业的内容审核专家,擅长识别各类内容问题并提供专业建议。请根据{country}的法规标准进行分析,并用{language}回答。"},
{"role": "user", "content": prompt}
],
"temperature": 0.1,
"max_tokens": 3000
}
async with aiohttp.ClientSession() as session:
async with session.post(self.base_url, headers=headers, json=data) as response:
if response.status == 200:
result = await response.json()
ai_response = result["choices"][0]["message"]["content"]
# 尝试解析JSON
try:
# 清理AI返回的内容
if "```json" in ai_response:
ai_response = ai_response.split("```json")[1].split("```")[0]
elif "```" in ai_response:
ai_response = ai_response.split("```")[1].split("```")[0]
analysis_result = json.loads(ai_response.strip())
return analysis_result
except json.JSONDecodeError:
# 如果JSON解析失败,返回基础分析
return self._create_fallback_analysis(text, keywords, country, language)
else:
return self._create_fallback_analysis(text, keywords, country, language)
except Exception as e:
print(f"AI analysis error: {e}")
return self._create_fallback_analysis(text, keywords, country, language)
def _create_fallback_analysis(self, text: str, keywords: List[str] = None, country: str = "China", language: str = "简体中文") -> Dict:
"""备用分析方法 - 简单返回无法分析的提示"""
return {
"typos": [],
"violations": [],
"fake_content": [],
"inappropriate_ads": [],
"keywords_analysis": [],
"overall_assessment": {
"risk_level": "未知",
"total_issues": 0,
"main_concerns": ["AI分析服务暂时不可用"],
"recommendations": ["请稍后重试或检查网络连接"],
"revised_text": text
}
}
# 全局AI分析器
ai_analyzer = AIContentAnalyzer()
def generate_hanyu_xinxie_cards(analysis_result: Dict, original_text: str) -> str:
"""生成汉语新解风格的SVG卡片"""
overall = analysis_result.get("overall_assessment", {})
total_issues = overall.get("total_issues", 0)
risk_level = overall.get("risk_level", "低")
# 莫兰迪色系配色
colors = {
"primary": "#B6B5A7", # 莫兰迪灰褐色
"secondary": "#9A8F8F", # 莫兰迪灰棕色
"accent": "#C5B4A0", # 莫兰迪淡棕色
"background": "#F2EDE9", # 莫兰迪浅米色
"text": "#5B5B5B", # 莫兰迪深灰色
"light_text": "#8C8C8C", # 莫兰迪中灰色
"divider": "#D1CBC3" # 莫兰迪浅灰色
}
# 根据风险等级调整颜色
if risk_level == "高":
colors["secondary"] = "#B85450" # 深红色
colors["accent"] = "#D4776B" # 浅红色
elif risk_level == "中":
colors["secondary"] = "#C4965A" # 橙色
colors["accent"] = "#D4A574" # 浅橙色
# 生成主要摘要卡片
main_card = f"""
<div style="
max-width: 900px;
margin: 0 auto;
padding: 20px;
background: linear-gradient(135deg, #E8E3DE 0%, #F2EDE9 100%);
border-radius: 20px;
font-family: 'Microsoft YaHei', 'Noto Sans SC', sans-serif;
margin-bottom: 25px;
">
<div style="
width: 100%;
background-color: {colors['background']};
border-radius: 20px;
box-shadow: 0 20px 40px rgba(0,0,0,0.1);
overflow: hidden;
position: relative;
">
<!-- 标题区域 -->
<div style="
background-color: {colors['secondary']};
color: {colors['background']};
padding: 20px;
text-align: left;
">
<h1 style="font-size: 28px; margin: 0; font-weight: 700;">🛡️ AI Content Audit Report</h1>
<p style="font-size: 16px; margin: 8px 0 0 0; opacity: 0.9;">China · Simplified Chinese · Hanyu Xinxie Style</p>
</div>
<!-- 内容区域 -->
<div style="padding: 25px 20px;">
<!-- 主要统计 -->
<div style="text-align: left; margin-bottom: 25px;">
<div style="
font-size: 48px;
color: {colors['text']};
margin-bottom: 12px;
font-weight: bold;
position: relative;
">
{total_issues} Issues Found
<div style="
position: absolute;
left: 0;
bottom: -6px;
width: 80px;
height: 4px;
background-color: {colors['accent']};
"></div>
</div>
<div style="
font-size: 20px;
color: {colors['light_text']};
margin: 15px 0;
">Risk Level: {risk_level}</div>
</div>
<!-- 分隔线 -->
<div style="
width: 100%;
height: 1px;
background-color: {colors['divider']};
margin: 20px 0;
"></div>
<!-- AI分析结果 -->
<div style="
font-size: 18px;
line-height: 1.8;
text-align: left;
">
<div style="
padding-left: 20px;
border-left: 4px solid {colors['accent']};
">"""
# 添加具体问题类型和详细信息
if analysis_result.get("typos"):
main_card += f'<p style="margin: 12px 0; color: {colors["text"]}; font-weight: bold; font-size: 18px;">📝 Typos: {len(analysis_result["typos"])} found</p>'
for typo in analysis_result["typos"][:2]: # 显示前2个
main_card += f'<p style="margin: 8px 0 8px 20px; color: {colors["light_text"]}; font-size: 16px;">"{typo.get("original", "")}" → "{typo.get("correct", "")}"</p>'
if analysis_result.get("violations"):
main_card += f'<p style="margin: 12px 0; color: {colors["text"]}; font-weight: bold; font-size: 18px;">⚠️ Violations: {len(analysis_result["violations"])} found</p>'
for violation in analysis_result["violations"][:2]: # 显示前2个
main_card += f'<p style="margin: 8px 0 8px 20px; color: {colors["light_text"]}; font-size: 16px;">"{violation.get("content", "")}" - {violation.get("type", "")}</p>'
if analysis_result.get("fake_content"):
main_card += f'<p style="margin: 12px 0; color: {colors["text"]}; font-weight: bold; font-size: 18px;">🚫 Fake Content: {len(analysis_result["fake_content"])} found</p>'
for fake in analysis_result["fake_content"][:2]: # 显示前2个
main_card += f'<p style="margin: 8px 0 8px 20px; color: {colors["light_text"]}; font-size: 16px;">"{fake.get("content", "")}" - {fake.get("type", "")}</p>'
if analysis_result.get("inappropriate_ads"):
main_card += f'<p style="margin: 12px 0; color: {colors["text"]}; font-weight: bold; font-size: 18px;">📢 Inappropriate Ads: {len(analysis_result["inappropriate_ads"])} found</p>'
for ad in analysis_result["inappropriate_ads"][:2]: # 显示前2个
main_card += f'<p style="margin: 8px 0 8px 20px; color: {colors["light_text"]}; font-size: 16px;">"{ad.get("word", "")}" - {ad.get("reason", "")}</p>'
if analysis_result.get("keywords_analysis"):
main_card += f'<p style="margin: 12px 0; color: {colors["text"]}; font-weight: bold; font-size: 18px;">🔍 Keywords: {len(analysis_result["keywords_analysis"])} analyzed</p>'
for kw in analysis_result["keywords_analysis"][:2]: # 显示前2个
main_card += f'<p style="margin: 8px 0 8px 20px; color: {colors["light_text"]}; font-size: 16px;">"{kw.get("keyword", "")}" - appears {kw.get("frequency", 0)} times</p>'
if total_issues == 0:
main_card += f'<p style="margin: 12px 0; color: {colors["light_text"]}; font-size: 18px;">✅ No obvious issues found</p>'
main_card += f"""
</div>
</div>
<!-- AI建议 -->
<div style="
margin-top: 20px;
padding: 15px;
background-color: rgba(255,255,255,0.5);
border-radius: 10px;
border-left: 4px solid {colors['accent']};
">
<h4 style="margin: 0 0 10px 0; color: {colors['text']}; font-size: 14px;">🤖 AI建议</h4>"""
recommendations = overall.get("recommendations", ["内容表述规范"])
for rec in recommendations[:2]: # 最多显示2个建议
main_card += f'<p style="margin: 5px 0; color: {colors["light_text"]}; font-size: 13px;">• {rec}</p>'
main_card += f"""
</div>
<!-- 中式印章风格装饰 -->
<div style="
text-align: center;
margin-top: 25px;
padding: 10px;
border: 2px solid {colors['accent']};
border-radius: 50%;
width: 70px;
height: 70px;
margin-left: auto;
margin-right: auto;
display: flex;
align-items: center;
justify-content: center;
">
<span style="
font-size: 18px;
color: {colors['secondary']};
font-weight: bold;
">AI审核</span>
</div>
</div>
<!-- 背景装饰文字 -->
<div style="
position: absolute;
font-size: 120px;
color: rgba(182, 181, 167, 0.05);
top: 50%;
left: 50%;
transform: translate(-50%, -50%);
font-weight: bold;
pointer-events: none;
z-index: 0;
">AI</div>
</div>
</div>
"""
# 生成详细分析卡片
detail_card = ""
if total_issues > 0:
detail_card = generate_detail_analysis_card(analysis_result, colors)
# 生成修改建议卡片
revision_card = ""
overall = analysis_result.get("overall_assessment", {})
if overall.get("revised_text"):
revision_card = generate_revision_card(analysis_result, colors)
return main_card + detail_card + revision_card
def generate_detail_analysis_card(analysis_result: Dict, colors: Dict) -> str:
"""生成详细分析卡片"""
detail_card = f"""
<div style="
display: flex;
justify-content: center;
padding: 20px;
background: linear-gradient(135deg, #E8E3DE 0%, #F2EDE9 100%);
border-radius: 15px;
font-family: 'Microsoft YaHei', 'Noto Sans SC', sans-serif;
margin-bottom: 20px;
">
<div style="
width: 500px;
background-color: {colors['background']};
border-radius: 20px;
box-shadow: 0 20px 40px rgba(0,0,0,0.1);
overflow: hidden;
position: relative;
">
<!-- 标题区域 -->
<div style="
background-color: {colors['secondary']};
color: {colors['background']};
padding: 20px;
text-align: left;
">
<h2 style="font-size: 18px; margin: 0; font-weight: 700;">📋 详细分析报告</h2>
<p style="font-size: 12px; margin: 5px 0 0 0; opacity: 0.9;">Detailed Analysis Report</p>
</div>
<!-- 内容区域 -->
<div style="padding: 25px 20px;">
"""
# 错别字详细分析
if analysis_result.get("typos"):
detail_card += f"""
<div style="margin-bottom: 20px;">
<h3 style="color: {colors['text']}; margin-bottom: 10px; font-size: 16px;">📝 错别字检测</h3>
"""
for i, typo in enumerate(analysis_result["typos"], 1):
detail_card += f"""
<div style="
background-color: rgba(255,255,255,0.5);
padding: 12px;
border-radius: 8px;
margin-bottom: 8px;
border-left: 4px solid {colors['accent']};
">
<p style="margin: 0; color: {colors['text']}; font-size: 14px;">
<strong>{i}. "{typo.get('original', '')}" → "{typo.get('correct', '')}"</strong>
</p>
<p style="margin: 5px 0 0 0; color: {colors['light_text']}; font-size: 12px;">
位置: {typo.get('position', '未知')} | 原因: {typo.get('reason', '')}
</p>
</div>
"""
detail_card += "</div>"
# 违规内容详细分析
if analysis_result.get("violations"):
detail_card += f"""
<div style="margin-bottom: 20px;">
<h3 style="color: {colors['text']}; margin-bottom: 10px; font-size: 16px;">⚠️ 违规内容检测</h3>
"""
for i, violation in enumerate(analysis_result["violations"], 1):
detail_card += f"""
<div style="
background-color: rgba(255,255,255,0.5);
padding: 12px;
border-radius: 8px;
margin-bottom: 8px;
border-left: 4px solid #B85450;
">
<p style="margin: 0; color: {colors['text']}; font-size: 14px;">
<strong>{i}. "{violation.get('content', '')}"</strong>
</p>
<p style="margin: 5px 0 0 0; color: {colors['light_text']}; font-size: 12px;">
类型: {violation.get('type', '')} | 位置: {violation.get('position', '未知')}
</p>
<p style="margin: 5px 0 0 0; color: {colors['light_text']}; font-size: 12px;">
原因: {violation.get('reason', '')}
</p>
<p style="margin: 5px 0 0 0; color: {colors['text']}; font-size: 12px;">
建议: {violation.get('suggestion', '')}
</p>
</div>
"""
detail_card += "</div>"
# 虚假内容详细分析
if analysis_result.get("fake_content"):
detail_card += f"""
<div style="margin-bottom: 20px;">
<h3 style="color: {colors['text']}; margin-bottom: 10px; font-size: 16px;">🚫 虚假内容检测</h3>
"""
for i, fake in enumerate(analysis_result["fake_content"], 1):
detail_card += f"""
<div style="
background-color: rgba(255,255,255,0.5);
padding: 12px;
border-radius: 8px;
margin-bottom: 8px;
border-left: 4px solid #D4776B;
">
<p style="margin: 0; color: {colors['text']}; font-size: 14px;">
<strong>{i}. "{fake.get('content', '')}"</strong>
</p>
<p style="margin: 5px 0 0 0; color: {colors['light_text']}; font-size: 12px;">
类型: {fake.get('type', '')} | 位置: {fake.get('position', '未知')}
</p>
<p style="margin: 5px 0 0 0; color: {colors['light_text']}; font-size: 12px;">
原因: {fake.get('reason', '')}
</p>
<p style="margin: 5px 0 0 0; color: {colors['text']}; font-size: 12px;">
建议: {fake.get('suggestion', '')}
</p>
</div>
"""
detail_card += "</div>"
detail_card += """
</div>
</div>
</div>
"""
return detail_card
def generate_revision_card(analysis_result: Dict, colors: Dict) -> str:
"""生成修改建议卡片"""
overall = analysis_result.get("overall_assessment", {})
revised_text = overall.get("revised_text", "")
revision_card = f"""
<div style="
display: flex;
justify-content: center;
padding: 20px;
background: linear-gradient(135deg, #E8E3DE 0%, #F2EDE9 100%);
border-radius: 15px;
font-family: 'Microsoft YaHei', 'Noto Sans SC', sans-serif;
margin-bottom: 20px;
">
<div style="
width: 500px;
background-color: {colors['background']};
border-radius: 20px;
box-shadow: 0 20px 40px rgba(0,0,0,0.1);
overflow: hidden;
position: relative;
">
<!-- 标题区域 -->
<div style="
background-color: #4A7C59;
color: {colors['background']};
padding: 20px;
text-align: left;
">
<h2 style="font-size: 18px; margin: 0; font-weight: 700;">✨ 修改建议</h2>
<p style="font-size: 12px; margin: 5px 0 0 0; opacity: 0.9;">Revision Suggestions</p>
</div>
<!-- 内容区域 -->
<div style="padding: 25px 20px;">
<div style="
background-color: rgba(74, 124, 89, 0.1);
padding: 15px;
border-radius: 10px;
border-left: 4px solid #4A7C59;
">
<h4 style="margin: 0 0 10px 0; color: {colors['text']}; font-size: 14px;">📝 修改后文本:</h4>
<p style="margin: 0; color: {colors['text']}; font-size: 14px; line-height: 1.6;">
{revised_text}
</p>
</div>
</div>
</div>
</div>
"""
return revision_card
def generate_error_card(error_msg: str) -> str:
"""生成错误信息卡片"""
return f"""
<div style="
display: flex;
justify-content: center;
padding: 20px;
background: linear-gradient(135deg, #E8E3DE 0%, #F2EDE9 100%);
border-radius: 15px;
font-family: 'Microsoft YaHei', sans-serif;
">
<div style="
width: 350px;
background-color: #F2EDE9;
border-radius: 20px;
box-shadow: 0 20px 40px rgba(0,0,0,0.1);
padding: 30px;
text-align: center;
">
<h2 style="color: #B85450; margin-bottom: 15px;">⚠️ 分析出错</h2>
<p style="color: #5B5B5B; margin-bottom: 20px;">AI分析过程中遇到问题:</p>
<div style="
background-color: rgba(184, 84, 80, 0.1);
padding: 15px;
border-radius: 10px;
border-left: 4px solid #B85450;
text-align: left;
">
<code style="color: #B85450; font-size: 12px;">{error_msg}</code>
</div>
<p style="color: #8C8C8C; margin-top: 15px; font-size: 14px;">请稍后重试或检查网络连接</p>
</div>
</div>
"""
def comprehensive_text_audit(text, keywords=""):
"""
AI-powered comprehensive text audit with SVG visualization
"""
if not text.strip():
return "❌ Please enter text content"
# Parse keywords
keyword_list = [k.strip() for k in keywords.split(",") if k.strip()] if keywords else []
try:
# 使用异步事件循环进行AI分析
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
try:
# 执行AI分析
analysis_result = loop.run_until_complete(
ai_analyzer.analyze_content(text, keyword_list)
)
finally:
loop.close()
# 生成汉语新解风格的SVG卡片
svg_cards = generate_hanyu_xinxie_cards(analysis_result, text)
return svg_cards
except Exception as e:
print(f"Analysis error: {e}")
# 返回错误信息的SVG卡片
return generate_error_card(str(e))
# 真正的流式输出AI分析
async def streaming_ai_analysis(text: str, keywords: List[str], country: str, language: str, model: str = "Qwen/Qwen3-8B (Free - SiliconFlow)"):
"""流式AI分析生成器"""
ai = AIContentAnalyzer()
# 解析模型名称
model_mapping = {
"Qwen/Qwen3-8B (Free - SiliconFlow)": "Qwen/Qwen3-8B",
"deepseek-ai/DeepSeek-V3-0324 (Paid - Nebius)": "deepseek-ai/DeepSeek-V3-0324",
"deepseek-ai/DeepSeek-R1-0528 (Paid - Nebius)": "deepseek-ai/DeepSeek-R1-0528",
"Qwen/Qwen3-235B-A22B (Paid - Nebius)": "Qwen/Qwen3-235B-A22B",
"google/gemma-3-27b-it (Paid - Nebius, Vision)": "google/gemma-3-27b-it"
}
actual_model = model_mapping.get(model, "Qwen/Qwen3-8B")
ai.set_model(actual_model) # 设置选择的模型
# 构建prompt
country_standards = {
"China": "中国广告法和相关法规",
"USA": "美国FTC广告标准",
"UK": "英国ASA广告标准",
"Japan": "日本景品表示法",
"Korea": "韩国公正交易委员会标准",
"Singapore": "新加坡CCCS标准",
"Malaysia": "马来西亚广告标准",
"Other": "国际通用广告标准"
}
country_names = {
"China": "中国",
"USA": "美国",
"UK": "英国",
"Japan": "日本",
"Korea": "韩国",
"Singapore": "新加坡",
"Malaysia": "马来西亚",
"Other": "其他地区"
}
standard = country_standards.get(country, "国际通用广告标准")
country_cn = country_names.get(country, country)
keywords_str = ", ".join(keywords) if keywords else "无"
prompt = f"""
你是专业的内容审核专家,请根据{country_cn}的{standard}对以下文本进行全面审核分析。
文本内容:{text}
关键词:{keywords_str}
审核地区:{country_cn}
回答语言:{language}
请按照以下JSON格式返回分析结果:
{{
"reasoning_content": "详细的推理过程和分析思路",
"sentence_analysis": [
{{
"sentence": "具体句子内容",
"risk_level": "green/yellow/orange/red",
"issues": ["具体问题1", "具体问题2"],
"explanation": "为什么认为有问题的详细解释"
}}
],
"revised_text": "修改后的完整文本",
"summary": {{
"total_issues": 问题总数,
"risk_level": "整体风险等级",
"main_concerns": ["主要问题1", "主要问题2"]
}}
}}
风险等级说明:
- green: 无问题,表述规范
- yellow: 轻微问题,建议优化
- orange: 中等问题,需要修改
- red: 严重问题,必须修改
请确保:
1. 每个句子都要分析并标注风险等级
2. 问题解释要具体明确
3. 修改后的文本要保持原意但符合法规
4. 返回标准的JSON格式
"""
try:
headers = {
"Authorization": f"Bearer {ai.api_key}",
"Content-Type": "application/json"
}
data = {
"model": ai.model,
"messages": [
{"role": "system", "content": f"你是专业的内容审核专家,请根据{country_cn}的法规标准进行分析,并用{language}回答。"},
{"role": "user", "content": prompt}
],
"temperature": 0.1,
"max_tokens": 3000,
"stream": True # 启用流式输出
}
async with aiohttp.ClientSession() as session:
async with session.post(ai.base_url, headers=headers, json=data) as response:
if response.status == 200:
async for line in response.content:
if line:
line_str = line.decode('utf-8').strip()
if line_str.startswith('data: '):
data_str = line_str[6:]
if data_str == '[DONE]':
break
try:
chunk = json.loads(data_str)
if 'choices' in chunk and len(chunk['choices']) > 0:
delta = chunk['choices'][0].get('delta', {})
if 'content' in delta and delta['content']:
yield str(delta['content'])
except json.JSONDecodeError:
continue
else:
yield "API调用失败,使用备用分析..."
# 返回备用分析
fallback = ai._create_fallback_analysis(text, keywords, country, language)
yield f"分析完成:发现{fallback['overall_assessment']['total_issues']}个问题"
except Exception as e:
yield f"分析出错:{str(e)}"
# 三次渐进式输出的审核函数 - 缓存结果并支持切换
def comprehensive_text_audit_streaming(text, keywords="", country="China", language="简体中文", model="Qwen/Qwen3-8B (Free - SiliconFlow)"):
"""
三次渐进式输出的AI内容审核 - 缓存所有阶段结果
"""
if not text.strip():
yield ("❌ Please enter text content", "", "", "")
return
# Parse keywords
keyword_list = [k.strip() for k in keywords.split(",") if k.strip()] if keywords else []
# 初始化对话历史和结果缓存
messages = []
stage1_result = ""
stage2_result = ""
stage3_result = ""
try:
# 第一阶段:基础分析
yield ("🔍 Stage 1: Basic Analysis in progress...", "", "", "")
stage1_final = None
for chunk in perform_streaming_analysis(text, keyword_list, country, language, model, messages, stage=1):
stage1_final = chunk
yield (chunk, "", "", "")
stage1_result = stage1_final
# 第二阶段:详细标注
yield (stage1_result, "🎨 Stage 2: Detailed Annotation in progress...", "", "")
stage2_final = None
for chunk in perform_streaming_analysis(text, keyword_list, country, language, model, messages, stage=2):
stage2_final = chunk
yield (stage1_result, chunk, "", "")
stage2_result = stage2_final
# 第三阶段:修改建议
yield (stage1_result, stage2_result, "✨ Stage 3: Revision Suggestions in progress...", "")
stage3_final = None
for chunk in perform_streaming_analysis(text, keyword_list, country, language, model, messages, stage=3):
stage3_final = chunk
yield (stage1_result, stage2_result, chunk, "")
stage3_result = stage3_final
# 生成摘要界面
summary_interface = generate_analysis_summary()
yield (stage1_result, stage2_result, stage3_result, summary_interface)
except Exception as e:
print(f"Analysis error: {e}")
error_msg = generate_error_card(str(e))
yield (error_msg, "", "", "")
# 执行流式分析
def perform_streaming_analysis(text: str, keywords: List[str], country: str, language: str, model: str, messages: list, stage: int):
"""执行真正的流式AI分析"""
# 解析模型名称和API配置
model_mapping = {
"Qwen/Qwen3-8B (Free - SiliconFlow)": {
"model": "Qwen/Qwen3-8B",
"api_key": os.getenv("SILICONFLOW_API_KEY", "sk-your-api-key-here"),
"base_url": "https://api.siliconflow.cn/v1/chat/completions"
},
"deepseek-ai/DeepSeek-V3-0324 (Paid - Nebius)": {
"model": "deepseek-ai/DeepSeek-V3-0324",
"api_key": os.getenv("NEBIUS_API_KEY", "your-nebius-api-key"),
"base_url": "https://api.studio.nebius.com/v1/chat/completions"
},
"deepseek-ai/DeepSeek-R1-0528 (Paid - Nebius)": {
"model": "deepseek-ai/DeepSeek-R1-0528",
"api_key": os.getenv("NEBIUS_API_KEY", "your-nebius-api-key"),
"base_url": "https://api.studio.nebius.com/v1/chat/completions"
},
"Qwen/Qwen3-235B-A22B (Paid - Nebius)": {
"model": "Qwen/Qwen3-235B-A22B",
"api_key": os.getenv("NEBIUS_API_KEY", "your-nebius-api-key"),
"base_url": "https://api.studio.nebius.com/v1/chat/completions"
},
"google/gemma-3-27b-it (Paid - Nebius, Vision)": {
"model": "google/gemma-3-27b-it",
"api_key": os.getenv("NEBIUS_API_KEY", "your-nebius-api-key"),
"base_url": "https://api.studio.nebius.com/v1/chat/completions"
}
}
model_config = model_mapping.get(model, model_mapping["Qwen/Qwen3-8B (Free - SiliconFlow)"])
# 构建国家和标准信息
country_standards = {
"China": "中国广告法和相关法规",
"USA": "美国FTC广告标准",
"UK": "英国ASA广告标准",
"Japan": "日本景品表示法",
"Korea": "韩国公正交易委员会标准",
"Singapore": "新加坡CCCS标准",
"Malaysia": "马来西亚广告标准",
"Other": "国际通用广告标准"
}
country_names = {
"China": "中国",
"USA": "美国",
"UK": "英国",
"Japan": "日本",
"Korea": "韩国",
"Singapore": "新加坡",
"Malaysia": "马来西亚",
"Other": "其他地区"
}
standard = country_standards.get(country, "国际通用广告标准")
country_cn = country_names.get(country, country)
keywords_str = ", ".join(keywords) if keywords else "无"
# 根据阶段构建不同的prompt
if stage == 1:
stage_title = "🔍 Stage 1: Basic Analysis"
user_prompt = f"""
你是专业的内容审核专家,请根据{country_cn}的{standard}对以下文本进行初步分析。
文本内容:{text}
关键词:{keywords_str}
审核地区:{country_cn}
回答语言:{language}
请进行基础分析,包括:
1. 整体风险评估
2. 主要问题识别
3. 法规符合性初判
请用{language}回答,提供清晰的分析结论。
"""
elif stage == 2:
stage_title = "🎨 Stage 2: Detailed Annotation"
user_prompt = f"""
基于前面的分析,现在请对文本进行详细的句子级标注分析,并生成HTML格式的标注版本。
请为每个句子标注风险等级:
- 绿色(#4CAF50):无问题,表述规范
- 黄色(#FFC107):轻微问题,建议优化
- 橙色(#FF9800):中等问题,需要修改
- 红色(#F44336):严重问题,必须修改
请直接返回HTML代码,格式如下:
```html
<div style="background-color: rgba(255,255,255,0.5); padding: 20px; border-radius: 10px;">
<div style="margin: 15px 0; padding: 15px; border-left: 5px solid #4CAF50; background-color: rgba(76, 175, 80, 0.1); border-radius: 8px;">
<p style="color: #333; font-size: 18px; line-height: 1.6; margin: 0 0 10px 0; font-weight: 500;">句子内容</p>
<div style="color: #666; font-size: 14px; margin-top: 10px; padding: 10px; background-color: rgba(255,255,255,0.7); border-radius: 5px;">
<strong>Risk Level:</strong> <span style="color: #4CAF50; font-weight: bold;">green</span><br>
<strong>Issues:</strong> 具体问题<br>
<strong>Explanation:</strong> 详细解释
</div>
</div>
</div>
```
请为原文的每个句子生成对应的HTML标注块。
"""
elif stage == 3:
stage_title = "✨ Stage 3: Revision Suggestions"
user_prompt = f"""
基于前面的分析和标注,现在请提供修改后的文本版本,并生成HTML格式的对比显示。
要求:
1. 保持原意的前提下修正所有问题
2. 确保符合{country_cn}的{standard}
3. 对比显示哪些句子被修改了,哪些保持不变
请直接返回HTML代码,格式如下:
```html
<div style="background-color: rgba(255,255,255,0.5); padding: 20px; border-radius: 10px;">
<!-- 未修改的句子 -->
<div style="margin: 15px 0; padding: 15px; border-left: 4px solid #4CAF50; background-color: rgba(76, 175, 80, 0.1); border-radius: 8px;">
<p style="color: #4CAF50; font-size: 18px; line-height: 1.6; margin: 0; font-weight: bold;">未修改的句子内容</p>
</div>
<!-- 修改过的句子 -->
<div style="margin: 15px 0; padding: 15px; border-left: 4px solid #333; background-color: rgba(76, 175, 80, 0.05); border-radius: 8px;">
<p style="color: #333; font-size: 18px; line-height: 1.6; margin: 0 0 10px 0;">修改后的句子内容</p>
<div style="color: #666; font-size: 14px; margin-top: 10px; padding: 10px; background-color: rgba(255,255,255,0.7); border-radius: 5px;">
<strong>Original:</strong> 原始句子内容
</div>
</div>
</div>
```
请为每个句子生成对应的HTML显示块。
"""
# 构建完整的消息列表
current_messages = messages.copy()
current_messages.append({"role": "user", "content": user_prompt})
# 初始化累积内容
accumulated_content = ""
accumulated_reasoning = ""
try:
# 使用OpenAI客户端进行流式调用
from openai import OpenAI
client = OpenAI(
base_url=model_config["base_url"].replace("/chat/completions", "/"),
api_key=model_config["api_key"]
)
# 发送流式请求
request_params = {
"model": model_config["model"],
"messages": current_messages,
"stream": True,
"max_tokens": 4096,
"temperature": 0.1
}
# 注意:Qwen/Qwen3-8B不支持thinking,只有特定模型支持
# 这里不添加thinking参数,因为会导致错误
response = client.chat.completions.create(**request_params)
# 逐步接收并处理响应
for chunk in response:
if chunk.choices[0].delta.content:
accumulated_content += chunk.choices[0].delta.content
if hasattr(chunk.choices[0].delta, 'reasoning_content') and chunk.choices[0].delta.reasoning_content:
accumulated_reasoning += chunk.choices[0].delta.reasoning_content
# 实时输出当前阶段的HTML
yield generate_streaming_stage_html(stage, stage_title, accumulated_content, accumulated_reasoning)
# 更新对话历史
messages.extend([
{"role": "user", "content": user_prompt},
{"role": "assistant", "content": accumulated_content}
])
except Exception as e:
print(f"Streaming API call error: {e}")
yield generate_error_card(str(e))
# 生成流式阶段HTML
def generate_streaming_stage_html(stage: int, title: str, content: str, reasoning: str) -> str:
"""生成流式输出的阶段HTML"""
# 根据阶段选择不同的说明文字
if stage == 1:
description = "AI is analyzing the overall risk and compliance..."
next_stage = "proceeding to detailed annotation..."
content_title = "📊 Analysis Results"
elif stage == 2:
description = "AI is creating color-coded sentence annotations..."
next_stage = "generating revision suggestions..."
content_title = "🎨 Annotated Content"
else:
description = "AI is providing corrected text and comparisons..."
next_stage = "analysis complete!"
content_title = "✨ Revised Content"
# 判断是否完成(有完整内容且不再更新)
is_complete = len(content.strip()) > 50 # 简单判断
# 处理内容显示 - 对于第2、3阶段,如果内容包含HTML,清理并直接显示
if stage >= 2 and '<div' in content:
# AI返回的是HTML,清理markdown标记
content_display = clean_ai_html_content(content)
content_style = ""
else:
# 第1阶段或纯文本,清理markdown格式并使用预格式化
content_display = clean_markdown_format(content)
content_style = "white-space: pre-wrap;"
return f"""
<div style="
max-width: 900px;
margin: 0 auto;
padding: 30px;
background: linear-gradient(135deg, #E8E3DE 0%, #F2EDE9 100%);
border-radius: 20px;
font-family: 'Microsoft YaHei', 'Noto Sans SC', sans-serif;
margin-bottom: 25px;
">
<div style="
background-color: #F2EDE9;
border-radius: 15px;
padding: 25px;
box-shadow: 0 10px 30px rgba(0,0,0,0.1);
">
<h2 style="
color: #5B5B5B;
margin-bottom: 20px;
font-size: 28px;
border-bottom: 3px solid #9A8F8F;
padding-bottom: 10px;
">{title}</h2>
<!-- 折叠的推理过程 - 移到正文上方,随时可展开 -->
<details style="
background-color: rgba(255,255,255,0.5);
padding: 15px;
border-radius: 10px;
margin-bottom: 20px;
">
<summary style="
color: #5B5B5B;
font-size: 18px;
font-weight: bold;
cursor: pointer;
padding: 10px;
background-color: rgba(154, 143, 143, 0.1);
border-radius: 5px;
display: block;
">🧠 AI Reasoning Process (Click to expand/collapse)</summary>
<div style="
color: #5B5B5B;
font-size: 14px;
line-height: 1.6;
padding: 15px;
background-color: rgba(255,255,255,0.3);
border-radius: 8px;
white-space: pre-wrap;
font-family: 'Courier New', monospace;
margin-top: 10px;
min-height: 30px;
">{reasoning if reasoning else 'AI reasoning process will appear here as analysis progresses...'}</div>
</details>
<!-- 分析内容 -->
<div style="
background-color: rgba(255,255,255,0.7);
padding: 20px;
border-radius: 10px;
margin-bottom: 20px;
border-left: 4px solid #4CAF50;
">
<h3 style="color: #5B5B5B; margin-bottom: 15px; font-size: 20px;">{content_title}</h3>
<div style="
color: #5B5B5B;
font-size: 16px;
line-height: 1.8;
{content_style}
min-height: 50px;
">{content_display}</div>
</div>
<div style="
text-align: center;
color: {'#4A7C59' if is_complete else '#FF9800'};
font-size: 16px;
font-weight: bold;
padding: 15px;
background-color: rgba({'74, 124, 89' if is_complete else '255, 152, 0'}, 0.1);
border-radius: 8px;
">{'✅ Stage ' + str(stage) + ' Complete, ' + next_stage if is_complete else '🔄 ' + description}</div>
</div>
</div>
"""
# 清理AI返回的HTML内容
def clean_ai_html_content(content: str) -> str:
"""清理AI返回的HTML内容,移除markdown标记"""
# 移除```html和```标记
if "```html" in content:
content = content.split("```html")[1].split("```")[0]
elif "```" in content:
# 如果有其他markdown代码块标记
parts = content.split("```")
if len(parts) >= 3:
content = parts[1]
# 清理多余的空白行
content = content.strip()
return content
# 清理文本中的markdown格式
def clean_markdown_format(text: str) -> str:
"""清理文本中的markdown格式标记"""
# 移除双引号markdown标记
text = text.replace('""', '"')
text = text.replace('"', '"')
text = text.replace('"', '"')
# 移除粗体标记
text = text.replace('**', '')
text = text.replace('__', '')
# 移除斜体标记
text = text.replace('*', '')
text = text.replace('_', '')
# 移除其他常见markdown标记
text = text.replace('`', '')
text = text.replace('~~', '')
return text
# 生成分析摘要
def generate_analysis_summary() -> str:
"""生成分析摘要界面"""
return f"""
<div style="
max-width: 900px;
margin: 0 auto;
padding: 30px;
background: linear-gradient(135deg, #E8E3DE 0%, #F2EDE9 100%);
border-radius: 20px;
font-family: 'Microsoft YaHei', 'Noto Sans SC', sans-serif;
">
<div style="
background-color: #F2EDE9;
border-radius: 15px;
padding: 25px;
box-shadow: 0 10px 30px rgba(0,0,0,0.1);
">
<h2 style="
color: #5B5B5B;
margin-bottom: 20px;
font-size: 28px;
border-bottom: 3px solid #9A8F8F;
padding-bottom: 10px;
">📊 Analysis Summary</h2>
<div style="
background-color: rgba(255,255,255,0.7);
padding: 20px;
border-radius: 10px;
margin-bottom: 20px;
">
<h3 style="color: #5B5B5B; margin-bottom: 15px; font-size: 20px;">🎯 Three-Stage Analysis Complete</h3>
<div style="margin: 15px 0;">
<h4 style="color: #4CAF50; margin-bottom: 10px;">🔍 Stage 1: Basic Analysis</h4>
<p style="color: #5B5B5B; margin-left: 20px;">Initial risk assessment and compliance evaluation</p>
</div>
<div style="margin: 15px 0;">
<h4 style="color: #FF9800; margin-bottom: 10px;">🎨 Stage 2: Detailed Annotation</h4>
<p style="color: #5B5B5B; margin-left: 20px;">Sentence-level risk marking with color coding</p>
</div>
<div style="margin: 15px 0;">
<h4 style="color: #9C27B0; margin-bottom: 10px;">✨ Stage 3: Revision Suggestions</h4>
<p style="color: #5B5B5B; margin-left: 20px;">Corrected text with compliance improvements</p>
</div>
</div>
<div style="
background-color: rgba(255,255,255,0.5);
padding: 20px;
border-radius: 10px;
margin-bottom: 20px;
">
<h3 style="color: #5B5B5B; margin-bottom: 15px; font-size: 20px;">💡 How to Use</h3>
<ul style="color: #5B5B5B; line-height: 1.8;">
<li><strong>Switch between tabs</strong> to view different analysis stages</li>
<li><strong>Click the reasoning sections</strong> to see AI's thought process</li>
<li><strong>Compare original and revised text</strong> in Stage 3</li>
<li><strong>Use color coding</strong> in Stage 2 to identify risk levels</li>
</ul>
</div>
<div style="
text-align: center;
color: #4A7C59;
font-size: 18px;
font-weight: bold;
padding: 20px;
background-color: rgba(74, 124, 89, 0.1);
border-radius: 8px;
">🎉 Content Audit Complete! Review all stages above.</div>
</div>
</div>
"""
# 执行reasoning分析
def perform_reasoning_analysis(text: str, keywords: List[str], country: str, language: str, model: str, messages: list, stage: int) -> dict:
"""执行带reasoning的AI分析"""
# 解析模型名称
model_mapping = {
"Qwen/QwQ-32B (Reasoning - SiliconFlow)": "Qwen/QwQ-32B",
"Pro/deepseek-ai/DeepSeek-R1 (Reasoning - SiliconFlow)": "Pro/deepseek-ai/DeepSeek-R1",
"Qwen/Qwen3-8B (Free - SiliconFlow)": "Qwen/Qwen3-8B",
"deepseek-ai/DeepSeek-V3-0324 (Paid - Nebius)": "deepseek-ai/DeepSeek-V3-0324",
"deepseek-ai/DeepSeek-R1-0528 (Paid - Nebius)": "deepseek-ai/DeepSeek-R1-0528",
"Qwen/Qwen3-235B-A22B (Paid - Nebius)": "Qwen/Qwen3-235B-A22B",
"google/gemma-3-27b-it (Paid - Nebius, Vision)": "google/gemma-3-27b-it"
}
actual_model = model_mapping.get(model, "Qwen/QwQ-32B")
# 构建国家和标准信息
country_standards = {
"China": "中国广告法和相关法规",
"USA": "美国FTC广告标准",
"UK": "英国ASA广告标准",
"Japan": "日本景品表示法",
"Korea": "韩国公正交易委员会标准",
"Singapore": "新加坡CCCS标准",
"Malaysia": "马来西亚广告标准",
"Other": "国际通用广告标准"
}
country_names = {
"China": "中国",
"USA": "美国",
"UK": "英国",
"Japan": "日本",
"Korea": "韩国",
"Singapore": "新加坡",
"Malaysia": "马来西亚",
"Other": "其他地区"
}
standard = country_standards.get(country, "国际通用广告标准")
country_cn = country_names.get(country, country)
keywords_str = ", ".join(keywords) if keywords else "无"
# 根据阶段构建不同的prompt
if stage == 1:
user_prompt = f"""
你是专业的内容审核专家,请根据{country_cn}的{standard}对以下文本进行初步分析。
文本内容:{text}
关键词:{keywords_str}
审核地区:{country_cn}
回答语言:{language}
请进行基础分析,包括:
1. 整体风险评估
2. 主要问题识别
3. 法规符合性初判
请用{language}回答,提供清晰的分析结论。
"""
elif stage == 2:
user_prompt = f"""
基于前面的分析,现在请对文本进行详细的句子级标注分析。
请为每个句子标注风险等级:
- 绿色:无问题,表述规范
- 黄色:轻微问题,建议优化
- 橙色:中等问题,需要修改
- 红色:严重问题,必须修改
对每个句子说明具体问题和原因。
"""
elif stage == 3:
user_prompt = f"""
基于前面的分析和标注,现在请提供修改后的文本版本。
要求:
1. 保持原意的前提下修正所有问题
2. 确保符合{country_cn}的{standard}
3. 对比显示哪些句子被修改了,哪些保持不变
请提供完整的修改版本。
"""
# 构建完整的消息列表
current_messages = messages.copy()
current_messages.append({"role": "user", "content": user_prompt})
# 调用AI API
try:
import requests
# 判断是否使用reasoning模型
is_reasoning_model = actual_model in ["Qwen/QwQ-32B", "Pro/deepseek-ai/DeepSeek-R1"]
api_key = os.getenv("SILICONFLOW_API_KEY", "sk-your-api-key-here")
payload = {
"model": actual_model,
"messages": current_messages,
"stream": True,
"max_tokens": 4096,
"temperature": 0.1
}
# 如果是reasoning模型,添加特殊参数
if is_reasoning_model:
if actual_model == "Qwen/QwQ-32B":
payload["enable_thinking"] = True
payload["thinking_budget"] = 4096
elif actual_model == "Pro/deepseek-ai/DeepSeek-R1":
payload["extra_body"] = {"thinking_budget": 1024}
headers = {
"Authorization": f"Bearer {api_key}",
"Content-Type": "application/json"
}
response = requests.post(
"https://api.siliconflow.cn/v1/chat/completions",
json=payload,
headers=headers,
stream=True
)
content = ""
reasoning_content = ""
# 处理流式响应
for line in response.iter_lines():
if line:
line_str = line.decode('utf-8')
if line_str.startswith('data: '):
data_str = line_str[6:]
if data_str == '[DONE]':
break
try:
chunk = json.loads(data_str)
if 'choices' in chunk and len(chunk['choices']) > 0:
delta = chunk['choices'][0].get('delta', {})
if 'content' in delta and delta['content']:
content += delta['content']
if 'reasoning_content' in delta and delta['reasoning_content']:
reasoning_content += delta['reasoning_content']
except json.JSONDecodeError:
continue
return {
"content": content,
"reasoning_content": reasoning_content,
"user_prompt": user_prompt,
"stage": stage
}
except Exception as e:
print(f"API call error: {e}")
return {
"content": f"API调用失败: {str(e)}",
"reasoning_content": "无法获取推理过程",
"user_prompt": user_prompt,
"stage": stage
}
# 生成第一阶段HTML(分析报告)
def generate_stage1_html(result: dict) -> str:
"""生成第一阶段的分析报告HTML"""
content = result.get("content", "")
reasoning = result.get("reasoning_content", "")
return f"""
<div style="
max-width: 900px;
margin: 0 auto;
padding: 30px;
background: linear-gradient(135deg, #E8E3DE 0%, #F2EDE9 100%);
border-radius: 20px;
font-family: 'Microsoft YaHei', 'Noto Sans SC', sans-serif;
margin-bottom: 25px;
">
<div style="
background-color: #F2EDE9;
border-radius: 15px;
padding: 25px;
box-shadow: 0 10px 30px rgba(0,0,0,0.1);
">
<h2 style="
color: #5B5B5B;
margin-bottom: 20px;
font-size: 28px;
border-bottom: 3px solid #9A8F8F;
padding-bottom: 10px;
">📋 Stage 1: AI Analysis Report</h2>
<!-- 分析内容 -->
<div style="
background-color: rgba(255,255,255,0.7);
padding: 20px;
border-radius: 10px;
margin-bottom: 20px;
border-left: 4px solid #4CAF50;
">
<h3 style="color: #5B5B5B; margin-bottom: 15px; font-size: 20px;">📊 Analysis Results</h3>
<div style="
color: #5B5B5B;
font-size: 16px;
line-height: 1.8;
white-space: pre-wrap;
">{content}</div>
</div>
<!-- 折叠的推理过程 -->
<details style="
background-color: rgba(255,255,255,0.5);
padding: 15px;
border-radius: 10px;
margin-bottom: 20px;
">
<summary style="
color: #5B5B5B;
font-size: 18px;
font-weight: bold;
cursor: pointer;
padding: 10px;
background-color: rgba(154, 143, 143, 0.1);
border-radius: 5px;
margin-bottom: 15px;
">🧠 AI Reasoning Process (Click to expand/collapse)</summary>
<div style="
color: #5B5B5B;
font-size: 14px;
line-height: 1.6;
padding: 15px;
background-color: rgba(255,255,255,0.3);
border-radius: 8px;
white-space: pre-wrap;
font-family: 'Courier New', monospace;
">{reasoning}</div>
</details>
<div style="
text-align: center;
color: #4A7C59;
font-size: 16px;
font-weight: bold;
padding: 15px;
background-color: rgba(74, 124, 89, 0.1);
border-radius: 8px;
">✅ Stage 1 Complete, proceeding to detailed annotation...</div>
</div>
</div>
"""
# 生成第二阶段HTML(详细标注)
def generate_stage2_html(result: dict) -> str:
"""生成第二阶段的详细标注HTML"""
content = result.get("content", "")
reasoning = result.get("reasoning_content", "")
return f"""
<div style="
max-width: 900px;
margin: 0 auto;
padding: 30px;
background: linear-gradient(135deg, #E8E3DE 0%, #F2EDE9 100%);
border-radius: 20px;
font-family: 'Microsoft YaHei', 'Noto Sans SC', sans-serif;
margin-bottom: 25px;
">
<div style="
background-color: #F2EDE9;
border-radius: 15px;
padding: 25px;
box-shadow: 0 10px 30px rgba(0,0,0,0.1);
">
<h2 style="
color: #5B5B5B;
margin-bottom: 20px;
font-size: 28px;
border-bottom: 3px solid #9A8F8F;
padding-bottom: 10px;
">🎨 Stage 2: Detailed Annotation</h2>
<!-- 颜色图例 -->
<div style="
background-color: rgba(255,255,255,0.7);
padding: 15px;
border-radius: 10px;
margin-bottom: 20px;
">
<h4 style="color: #5B5B5B; margin-bottom: 10px;">Color Legend:</h4>
<div style="display: flex; flex-wrap: wrap; gap: 15px;">
<span style="color: #4CAF50; font-weight: bold;">🟢 Green: No Issues</span>
<span style="color: #FFC107; font-weight: bold;">🟡 Yellow: Minor Issues</span>
<span style="color: #FF9800; font-weight: bold;">🟠 Orange: Moderate Issues</span>
<span style="color: #F44336; font-weight: bold;">🔴 Red: Serious Issues</span>
</div>
</div>
<!-- 标注内容 -->
<div style="
background-color: rgba(255,255,255,0.5);
padding: 20px;
border-radius: 10px;
margin-bottom: 20px;
">
<div style="
color: #5B5B5B;
font-size: 16px;
line-height: 1.8;
white-space: pre-wrap;
">{content}</div>
</div>
<!-- 折叠的推理过程 -->
<details style="
background-color: rgba(255,255,255,0.5);
padding: 15px;
border-radius: 10px;
margin-bottom: 20px;
">
<summary style="
color: #5B5B5B;
font-size: 18px;
font-weight: bold;
cursor: pointer;
padding: 10px;
background-color: rgba(154, 143, 143, 0.1);
border-radius: 5px;
margin-bottom: 15px;
">🧠 AI Reasoning Process (Click to expand/collapse)</summary>
<div style="
color: #5B5B5B;
font-size: 14px;
line-height: 1.6;
padding: 15px;
background-color: rgba(255,255,255,0.3);
border-radius: 8px;
white-space: pre-wrap;
font-family: 'Courier New', monospace;
">{reasoning}</div>
</details>
<div style="
text-align: center;
color: #4A7C59;
font-size: 16px;
font-weight: bold;
padding: 15px;
background-color: rgba(74, 124, 89, 0.1);
border-radius: 8px;
">✅ Stage 2 Complete, generating revision suggestions...</div>
</div>
</div>
"""
# 生成第三阶段HTML(修改建议)
def generate_stage3_html(result: dict) -> str:
"""生成第三阶段的修改建议HTML"""
content = result.get("content", "")
reasoning = result.get("reasoning_content", "")
return f"""
<div style="
max-width: 900px;
margin: 0 auto;
padding: 30px;
background: linear-gradient(135deg, #E8E3DE 0%, #F2EDE9 100%);
border-radius: 20px;
font-family: 'Microsoft YaHei', 'Noto Sans SC', sans-serif;
margin-bottom: 25px;
">
<div style="
background-color: #F2EDE9;
border-radius: 15px;
padding: 25px;
box-shadow: 0 10px 30px rgba(0,0,0,0.1);
">
<h2 style="
color: #5B5B5B;
margin-bottom: 20px;
font-size: 28px;
border-bottom: 3px solid #9A8F8F;
padding-bottom: 10px;
">✨ Stage 3: Revision Suggestions</h2>
<!-- 说明 -->
<div style="
background-color: rgba(255,255,255,0.7);
padding: 15px;
border-radius: 10px;
margin-bottom: 20px;
">
<h4 style="color: #5B5B5B; margin-bottom: 10px;">Legend:</h4>
<p style="color: #4CAF50; font-weight: bold; margin: 5px 0;">🟢 Green: Unchanged sentences (compliant)</p>
<p style="color: #333; margin: 5px 0;">⚫ Normal: Modified sentences (with explanations)</p>
</div>
<!-- 修改建议内容 -->
<div style="
background-color: rgba(255,255,255,0.5);
padding: 20px;
border-radius: 10px;
margin-bottom: 20px;
">
<div style="
color: #5B5B5B;
font-size: 16px;
line-height: 1.8;
white-space: pre-wrap;
">{content}</div>
</div>
<!-- 折叠的推理过程 -->
<details style="
background-color: rgba(255,255,255,0.5);
padding: 15px;
border-radius: 10px;
margin-bottom: 20px;
">
<summary style="
color: #5B5B5B;
font-size: 18px;
font-weight: bold;
cursor: pointer;
padding: 10px;
background-color: rgba(154, 143, 143, 0.1);
border-radius: 5px;
margin-bottom: 15px;
">🧠 AI Reasoning Process (Click to expand/collapse)</summary>
<div style="
color: #5B5B5B;
font-size: 14px;
line-height: 1.6;
padding: 15px;
background-color: rgba(255,255,255,0.3);
border-radius: 8px;
white-space: pre-wrap;
font-family: 'Courier New', monospace;
">{reasoning}</div>
</details>
<div style="
text-align: center;
color: #4A7C59;
font-size: 18px;
font-weight: bold;
padding: 20px;
background-color: rgba(74, 124, 89, 0.1);
border-radius: 8px;
">🎉 All Stages Complete! Content audit finished.</div>
</div>
</div>
"""
# 获取AI生成的HTML(分阶段)
def get_ai_generated_html(text: str, keywords: List[str], country: str, language: str, model: str, stage: int) -> str:
"""获取AI生成的HTML内容"""
ai = AIContentAnalyzer()
# 解析模型名称
model_mapping = {
"Qwen/Qwen3-8B (Free - SiliconFlow)": "Qwen/Qwen3-8B",
"deepseek-ai/DeepSeek-V3-0324 (Paid - Nebius)": "deepseek-ai/DeepSeek-V3-0324",
"deepseek-ai/DeepSeek-R1-0528 (Paid - Nebius)": "deepseek-ai/DeepSeek-R1-0528",
"Qwen/Qwen3-235B-A22B (Paid - Nebius)": "Qwen/Qwen3-235B-A22B",
"google/gemma-3-27b-it (Paid - Nebius, Vision)": "google/gemma-3-27b-it"
}
actual_model = model_mapping.get(model, "Qwen/Qwen3-8B")
ai.set_model(actual_model)
# 构建不同阶段的prompt
country_standards = {
"China": "中国广告法和相关法规",
"USA": "美国FTC广告标准",
"UK": "英国ASA广告标准",
"Japan": "日本景品表示法",
"Korea": "韩国公正交易委员会标准",
"Singapore": "新加坡CCCS标准",
"Malaysia": "马来西亚广告标准",
"Other": "国际通用广告标准"
}
country_names = {
"China": "中国",
"USA": "美国",
"UK": "英国",
"Japan": "日本",
"Korea": "韩国",
"Singapore": "新加坡",
"Malaysia": "马来西亚",
"Other": "其他地区"
}
standard = country_standards.get(country, "国际通用广告标准")
country_cn = country_names.get(country, country)
keywords_str = ", ".join(keywords) if keywords else "无"
# 根据阶段生成不同的prompt
if stage == 1:
prompt = f"""
你是专业的内容审核专家,请根据{country_cn}的{standard}对以下文本进行全面审核分析。
文本内容:{text}
关键词:{keywords_str}
审核地区:{country_cn}
回答语言:{language}
请生成第一阶段的分析报告HTML,包含:
1. 详细的推理过程(放在折叠的思考框中)
2. 分析摘要(发现的问题总数、风险等级、主要问题)
请直接返回完整的HTML代码,使用以下样式框架,并填入具体内容:
<div style="max-width: 900px; margin: 0 auto; padding: 30px; background: linear-gradient(135deg, #E8E3DE 0%, #F2EDE9 100%); border-radius: 20px; font-family: 'Microsoft YaHei', 'Noto Sans SC', sans-serif;">
<div style="background-color: #F2EDE9; border-radius: 15px; padding: 25px; box-shadow: 0 10px 30px rgba(0,0,0,0.1);">
<h2 style="color: #5B5B5B; margin-bottom: 20px; font-size: 28px; border-bottom: 3px solid #9A8F8F; padding-bottom: 10px;">📋 Step 1: AI Analysis Report</h2>
<!-- 分析摘要 -->
<div style="background-color: rgba(255,255,255,0.7); padding: 20px; border-radius: 10px; margin-bottom: 20px; border-left: 4px solid #FF9800;">
<h3 style="color: #5B5B5B; margin-bottom: 15px; font-size: 20px;">📊 Analysis Summary</h3>
<p style="color: #5B5B5B; font-size: 18px; margin: 10px 0;"><strong>Issues Found:</strong> [填入具体数字]</p>
<p style="color: #5B5B5B; font-size: 18px; margin: 10px 0;"><strong>Risk Level:</strong> <span style="color: #FF9800; font-weight: bold;">[填入风险等级]</span></p>
<p style="color: #5B5B5B; font-size: 16px; margin: 10px 0;"><strong>Main Concerns:</strong> [填入主要问题]</p>
</div>
<!-- 折叠的思考过程 -->
<details style="background-color: rgba(255,255,255,0.5); padding: 15px; border-radius: 10px; margin-bottom: 20px;">
<summary style="color: #5B5B5B; font-size: 18px; font-weight: bold; cursor: pointer; padding: 10px; background-color: rgba(154, 143, 143, 0.1); border-radius: 5px; margin-bottom: 15px;">🧠 AI Reasoning Process (Click to expand/collapse)</summary>
<div style="color: #5B5B5B; font-size: 16px; line-height: 1.6; padding: 15px; background-color: rgba(255,255,255,0.3); border-radius: 8px; white-space: pre-wrap;">
[在这里填入详细的推理过程,包括:
1. 对文本的初步分析
2. 发现的具体问题
3. 风险评估的依据
4. 法规符合性分析
等等]
</div>
</details>
<div style="text-align: center; color: #4A7C59; font-size: 16px; font-weight: bold; padding: 15px; background-color: rgba(74, 124, 89, 0.1); border-radius: 8px;">✅ Step 1 Complete, generating annotated version...</div>
</div>
</div>
"""
elif stage == 2:
prompt = f"""
请为以下文本生成第二阶段的标注版HTML:
原文:{text}
审核标准:{country_cn}的{standard}
请生成带颜色标注的HTML版本,要求:
1. 每个句子根据风险等级标注颜色(绿色=无问题,黄色=轻微,橙色=中等,红色=严重)
2. 在句子下方添加问题说明
3. 包含颜色图例
请直接返回完整的HTML代码,使用以下样式框架:
<div style="max-width: 900px; margin: 0 auto; padding: 30px; background: linear-gradient(135deg, #E8E3DE 0%, #F2EDE9 100%); border-radius: 20px; font-family: 'Microsoft YaHei', 'Noto Sans SC', sans-serif;">
<div style="background-color: #F2EDE9; border-radius: 15px; padding: 25px; box-shadow: 0 10px 30px rgba(0,0,0,0.1);">
<h2 style="color: #5B5B5B; margin-bottom: 20px; font-size: 28px; border-bottom: 3px solid #9A8F8F; padding-bottom: 10px;">🎨 Step 2: Annotated Version</h2>
<!-- 颜色图例 -->
<div style="background-color: rgba(255,255,255,0.7); padding: 15px; border-radius: 10px; margin-bottom: 20px;">
<h4 style="color: #5B5B5B; margin-bottom: 10px;">Color Legend:</h4>
<div style="display: flex; flex-wrap: wrap; gap: 15px;">
<span style="color: #4CAF50; font-weight: bold;">🟢 Green: No Issues</span>
<span style="color: #FFC107; font-weight: bold;">🟡 Yellow: Minor Issues</span>
<span style="color: #FF9800; font-weight: bold;">🟠 Orange: Moderate Issues</span>
<span style="color: #F44336; font-weight: bold;">🔴 Red: Serious Issues</span>
</div>
</div>
<!-- 标注内容 -->
<div style="background-color: rgba(255,255,255,0.5); padding: 20px; border-radius: 10px; margin-bottom: 20px;">
[在这里为每个句子生成标注,格式如下:
<div style="margin: 15px 0; padding: 15px; border-left: 5px solid #4CAF50; background-color: rgba(76, 175, 80, 0.1); border-radius: 8px;">
<p style="color: #333; font-size: 18px; line-height: 1.6; margin: 0 0 10px 0; font-weight: 500;">句子内容</p>
<div style="color: #666; font-size: 14px; margin-top: 10px; padding: 10px; background-color: rgba(255,255,255,0.7); border-radius: 5px;">
<strong>Risk Level:</strong> <span style="color: #4CAF50; font-weight: bold;">green</span><br>
<strong>Issues:</strong> 无问题<br>
<strong>Explanation:</strong> 表述规范,符合法规要求
</div>
</div>
请为每个句子生成类似的标注块,根据实际风险等级调整颜色]
</div>
<div style="text-align: center; color: #4A7C59; font-size: 16px; font-weight: bold; padding: 15px; background-color: rgba(74, 124, 89, 0.1); border-radius: 8px;">✅ Step 2 Complete, generating revised version...</div>
</div>
</div>
"""
elif stage == 3:
prompt = f"""
请为以下文本生成第三阶段的修改版HTML:
原文:{text}
审核标准:{country_cn}的{standard}
请生成修改后的文本对比版,要求:
1. 显示修改后的完整文本
2. 未修改的句子用绿色粗体显示
3. 修改过的句子正常显示,并在下方显示原文
请直接返回完整的HTML代码,使用以下样式框架:
<div style="max-width: 900px; margin: 0 auto; padding: 30px; background: linear-gradient(135deg, #E8E3DE 0%, #F2EDE9 100%); border-radius: 20px; font-family: 'Microsoft YaHei', 'Noto Sans SC', sans-serif;">
<div style="background-color: #F2EDE9; border-radius: 15px; padding: 25px; box-shadow: 0 10px 30px rgba(0,0,0,0.1);">
<h2 style="color: #5B5B5B; margin-bottom: 20px; font-size: 28px; border-bottom: 3px solid #9A8F8F; padding-bottom: 10px;">✨ Step 3: Revised Text</h2>
<!-- 说明 -->
<div style="background-color: rgba(255,255,255,0.7); padding: 15px; border-radius: 10px; margin-bottom: 20px;">
<h4 style="color: #5B5B5B; margin-bottom: 10px;">Legend:</h4>
<p style="color: #4CAF50; font-weight: bold; margin: 5px 0;">🟢 Green Bold: Unchanged sentences (compliant)</p>
<p style="color: #333; margin: 5px 0;">⚫ Normal: Modified sentences (with original shown below)</p>
</div>
<!-- 修改后的文本 -->
<div style="background-color: rgba(255,255,255,0.5); padding: 20px; border-radius: 10px; margin-bottom: 20px;">
[在这里生成修改后的文本对比,格式如下:
未修改的句子:
<div style="margin: 15px 0; padding: 15px; border-left: 4px solid #4CAF50; background-color: rgba(76, 175, 80, 0.1); border-radius: 8px;">
<p style="color: #4CAF50; font-size: 18px; line-height: 1.6; margin: 0; font-weight: bold;">句子内容</p>
</div>
修改过的句子:
<div style="margin: 15px 0; padding: 15px; border-left: 4px solid #333; background-color: rgba(76, 175, 80, 0.05); border-radius: 8px;">
<p style="color: #333; font-size: 18px; line-height: 1.6; margin: 0 0 10px 0;">修改后的句子</p>
<div style="color: #666; font-size: 14px; margin-top: 10px; padding: 10px; background-color: rgba(255,255,255,0.7); border-radius: 5px;">
<strong>Original:</strong> 原始句子
</div>
</div>
请为每个句子生成对应的显示块]
</div>
<div style="text-align: center; color: #4A7C59; font-size: 18px; font-weight: bold; padding: 20px; background-color: rgba(74, 124, 89, 0.1); border-radius: 8px;">🎉 All Steps Complete! Content audit finished.</div>
</div>
</div>
"""
# 调用AI API
try:
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
try:
result = loop.run_until_complete(call_ai_api(ai, prompt))
return result
finally:
loop.close()
except Exception as e:
print(f"AI API error: {e}")
return generate_error_card(str(e))
# 调用AI API的辅助函数
async def call_ai_api(ai: AIContentAnalyzer, prompt: str) -> str:
"""调用AI API获取HTML响应"""
try:
headers = {
"Authorization": f"Bearer {ai.api_key}",
"Content-Type": "application/json"
}
data = {
"model": ai.model,
"messages": [
{"role": "system", "content": "你是专业的内容审核专家,请直接返回完整的HTML代码,不要添加任何markdown标记或其他格式。"},
{"role": "user", "content": prompt}
],
"temperature": 0.1,
"max_tokens": 4000
}
async with aiohttp.ClientSession() as session:
async with session.post(ai.base_url, headers=headers, json=data) as response:
if response.status == 200:
result = await response.json()
ai_response = result["choices"][0]["message"]["content"]
# 清理AI返回的内容,提取HTML
if "```html" in ai_response:
ai_response = ai_response.split("```html")[1].split("```")[0]
elif "```" in ai_response:
ai_response = ai_response.split("```")[1].split("```")[0]
return ai_response.strip()
else:
return generate_error_card("AI API调用失败")
except Exception as e:
print(f"AI API call error: {e}")
return generate_error_card(str(e))
# 获取完整AI分析结果
async def get_complete_ai_analysis(text: str, keywords: List[str], country: str, language: str, model: str):
"""获取完整的AI分析结果"""
ai = AIContentAnalyzer()
# 解析模型名称
model_mapping = {
"Qwen/Qwen3-8B (Free - SiliconFlow)": "Qwen/Qwen3-8B",
"deepseek-ai/DeepSeek-V3-0324 (Paid - Nebius)": "deepseek-ai/DeepSeek-V3-0324",
"deepseek-ai/DeepSeek-R1-0528 (Paid - Nebius)": "deepseek-ai/DeepSeek-R1-0528",
"Qwen/Qwen3-235B-A22B (Paid - Nebius)": "Qwen/Qwen3-235B-A22B",
"google/gemma-3-27b-it (Paid - Nebius, Vision)": "google/gemma-3-27b-it"
}
actual_model = model_mapping.get(model, "Qwen/Qwen3-8B")
ai.set_model(actual_model)
# 构建prompt
country_standards = {
"China": "中国广告法和相关法规",
"USA": "美国FTC广告标准",
"UK": "英国ASA广告标准",
"Japan": "日本景品表示法",
"Korea": "韩国公正交易委员会标准",
"Singapore": "新加坡CCCS标准",
"Malaysia": "马来西亚广告标准",
"Other": "国际通用广告标准"
}
country_names = {
"China": "中国",
"USA": "美国",
"UK": "英国",
"Japan": "日本",
"Korea": "韩国",
"Singapore": "新加坡",
"Malaysia": "马来西亚",
"Other": "其他地区"
}
standard = country_standards.get(country, "国际通用广告标准")
country_cn = country_names.get(country, country)
keywords_str = ", ".join(keywords) if keywords else "无"
prompt = f"""
你是专业的内容审核专家,请根据{country_cn}的{standard}对以下文本进行全面审核分析。
文本内容:{text}
关键词:{keywords_str}
审核地区:{country_cn}
回答语言:{language}
请按照以下JSON格式返回分析结果:
{{
"reasoning_content": "详细的推理过程和分析思路",
"sentence_analysis": [
{{
"sentence": "具体句子内容",
"risk_level": "green/yellow/orange/red",
"issues": ["具体问题1", "具体问题2"],
"explanation": "为什么认为有问题的详细解释"
}}
],
"revised_text": "修改后的完整文本",
"summary": {{
"total_issues": 问题总数,
"risk_level": "整体风险等级",
"main_concerns": ["主要问题1", "主要问题2"]
}}
}}
风险等级说明:
- green: 无问题,表述规范
- yellow: 轻微问题,建议优化
- orange: 中等问题,需要修改
- red: 严重问题,必须修改
请确保:
1. 每个句子都要分析并标注风险等级
2. 问题解释要具体明确
3. 修改后的文本要保持原意但符合法规
4. 返回标准的JSON格式
"""
try:
headers = {
"Authorization": f"Bearer {ai.api_key}",
"Content-Type": "application/json"
}
data = {
"model": ai.model,
"messages": [
{"role": "system", "content": f"你是专业的内容审核专家,请根据{country_cn}的法规标准进行分析,并用{language}回答。"},
{"role": "user", "content": prompt}
],
"temperature": 0.1,
"max_tokens": 4000
}
async with aiohttp.ClientSession() as session:
async with session.post(ai.base_url, headers=headers, json=data) as response:
if response.status == 200:
result = await response.json()
ai_response = result["choices"][0]["message"]["content"]
# 尝试解析JSON
try:
# 清理AI返回的内容
if "```json" in ai_response:
ai_response = ai_response.split("```json")[1].split("```")[0]
elif "```" in ai_response:
ai_response = ai_response.split("```")[1].split("```")[0]
analysis_result = json.loads(ai_response.strip())
return analysis_result
except json.JSONDecodeError:
# 如果JSON解析失败,返回基础分析
return create_fallback_structured_analysis(text)
else:
return create_fallback_structured_analysis(text)
except Exception as e:
print(f"AI analysis error: {e}")
return create_fallback_structured_analysis(text)
def create_fallback_structured_analysis(text: str) -> Dict:
"""创建备用的结构化分析结果"""
sentences = text.split('。')
sentence_analysis = []
for sentence in sentences:
if sentence.strip():
sentence_analysis.append({
"sentence": sentence.strip() + "。",
"risk_level": "green",
"issues": [],
"explanation": "AI分析服务暂时不可用,无法进行详细分析"
})
return {
"reasoning_content": "AI分析服务暂时不可用,请稍后重试或检查网络连接。",
"sentence_analysis": sentence_analysis,
"revised_text": text,
"summary": {
"total_issues": 0,
"risk_level": "unknown",
"main_concerns": ["AI分析服务暂时不可用"]
}
}
# 生成加载卡片
def generate_loading_card(title: str, message: str) -> str:
"""生成加载中的卡片"""
return f"""
<div style="
max-width: 900px;
margin: 0 auto;
padding: 30px;
background: linear-gradient(135deg, #E8E3DE 0%, #F2EDE9 100%);
border-radius: 20px;
font-family: 'Microsoft YaHei', 'Noto Sans SC', sans-serif;
text-align: center;
">
<div style="
background-color: #F2EDE9;
border-radius: 15px;
padding: 40px;
box-shadow: 0 10px 30px rgba(0,0,0,0.1);
">
<h2 style="color: #5B5B5B; margin-bottom: 20px; font-size: 24px;">{title}</h2>
<p style="color: #8C8C8C; margin-bottom: 30px; font-size: 16px;">{message}</p>
<div style="
width: 200px;
height: 4px;
background: #D1CBC3;
border-radius: 2px;
margin: 0 auto;
overflow: hidden;
">
<div style="
width: 30%;
height: 100%;
background: #9A8F8F;
border-radius: 2px;
animation: loading 2s infinite;
"></div>
</div>
</div>
<style>
@keyframes loading {{
0% {{ transform: translateX(-100%); }}
100% {{ transform: translateX(400%); }}
}}
</style>
</div>
"""
# 生成分析报告卡片(第一次输出)
def generate_analysis_report_card(analysis_result: Dict) -> str:
"""生成分析报告卡片,reasoning_content放在折叠栏中"""
summary = analysis_result.get("summary", {})
reasoning = analysis_result.get("reasoning_content", "")
total_issues = summary.get("total_issues", 0)
risk_level = summary.get("risk_level", "unknown")
main_concerns = summary.get("main_concerns", [])
# 风险等级颜色
risk_colors = {
"low": "#4CAF50",
"medium": "#FF9800",
"high": "#F44336",
"unknown": "#9E9E9E"
}
risk_color = risk_colors.get(risk_level, "#9E9E9E")
return f"""
<div style="
max-width: 900px;
margin: 0 auto;
padding: 30px;
background: linear-gradient(135deg, #E8E3DE 0%, #F2EDE9 100%);
border-radius: 20px;
font-family: 'Microsoft YaHei', 'Noto Sans SC', sans-serif;
margin-bottom: 25px;
">
<div style="
background-color: #F2EDE9;
border-radius: 15px;
padding: 25px;
box-shadow: 0 10px 30px rgba(0,0,0,0.1);
">
<h2 style="
color: #5B5B5B;
margin-bottom: 20px;
font-size: 28px;
border-bottom: 3px solid #9A8F8F;
padding-bottom: 10px;
">📋 Step 1: AI Analysis Report</h2>
<!-- 摘要信息 -->
<div style="
background-color: rgba(255,255,255,0.7);
padding: 20px;
border-radius: 10px;
margin-bottom: 20px;
border-left: 4px solid {risk_color};
">
<h3 style="color: #5B5B5B; margin-bottom: 15px; font-size: 20px;">📊 Analysis Summary</h3>
<p style="color: #5B5B5B; font-size: 18px; margin: 10px 0;">
<strong>Issues Found:</strong> {total_issues}
</p>
<p style="color: #5B5B5B; font-size: 18px; margin: 10px 0;">
<strong>Risk Level:</strong> <span style="color: {risk_color}; font-weight: bold;">{risk_level}</span>
</p>
{f'<p style="color: #5B5B5B; font-size: 16px; margin: 10px 0;"><strong>Main Concerns:</strong> {", ".join(main_concerns)}</p>' if main_concerns else ''}
</div>
<!-- 折叠的推理过程 -->
<details style="
background-color: rgba(255,255,255,0.5);
padding: 15px;
border-radius: 10px;
margin-bottom: 20px;
">
<summary style="
color: #5B5B5B;
font-size: 18px;
font-weight: bold;
cursor: pointer;
padding: 10px;
background-color: rgba(154, 143, 143, 0.1);
border-radius: 5px;
margin-bottom: 15px;
">🧠 AI Reasoning Process (Click to expand/collapse)</summary>
<div style="
color: #5B5B5B;
font-size: 16px;
line-height: 1.6;
padding: 15px;
background-color: rgba(255,255,255,0.3);
border-radius: 8px;
white-space: pre-wrap;
">{reasoning}</div>
</details>
<div style="
text-align: center;
color: #4A7C59;
font-size: 16px;
font-weight: bold;
padding: 15px;
background-color: rgba(74, 124, 89, 0.1);
border-radius: 8px;
">✅ Step 1 Complete, generating annotated version...</div>
</div>
</div>
"""
# 生成原文标注版HTML卡片(第二次输出)
def generate_annotated_html_card(original_text: str, analysis_result: Dict) -> str:
"""生成原文标注版HTML"""
sentence_analysis = analysis_result.get("sentence_analysis", [])
# 风险等级颜色映射
risk_colors = {
"green": "#4CAF50",
"yellow": "#FFC107",
"orange": "#FF9800",
"red": "#F44336"
}
# 生成标注的HTML内容
annotated_html = ""
for item in sentence_analysis:
sentence = item.get("sentence", "")
risk_level = item.get("risk_level", "green")
issues = item.get("issues", [])
explanation = item.get("explanation", "")
color = risk_colors.get(risk_level, "#4CAF50")
# 生成句子标注
annotated_html += f"""
<div style="
margin: 15px 0;
padding: 15px;
border-left: 5px solid {color};
background-color: rgba({','.join([str(int(color[i:i+2], 16)) for i in (1, 3, 5)])}, 0.1);
border-radius: 8px;
">
<p style="
color: #333;
font-size: 18px;
line-height: 1.6;
margin: 0 0 10px 0;
font-weight: 500;
">{sentence}</p>
{f'''
<div style="
color: #666;
font-size: 14px;
margin-top: 10px;
padding: 10px;
background-color: rgba(255,255,255,0.7);
border-radius: 5px;
">
<strong>Risk Level:</strong> <span style="color: {color}; font-weight: bold;">{risk_level}</span><br>
{f"<strong>Issues:</strong> {', '.join(issues)}<br>" if issues else ""}
<strong>Explanation:</strong> {explanation}
</div>
''' if explanation or issues else ''}
</div>
"""
return f"""
<div style="
max-width: 900px;
margin: 0 auto;
padding: 30px;
background: linear-gradient(135deg, #E8E3DE 0%, #F2EDE9 100%);
border-radius: 20px;
font-family: 'Microsoft YaHei', 'Noto Sans SC', sans-serif;
margin-bottom: 25px;
">
<div style="
background-color: #F2EDE9;
border-radius: 15px;
padding: 25px;
box-shadow: 0 10px 30px rgba(0,0,0,0.1);
">
<h2 style="
color: #5B5B5B;
margin-bottom: 20px;
font-size: 28px;
border-bottom: 3px solid #9A8F8F;
padding-bottom: 10px;
">🎨 Step 2: Annotated Version</h2>
<!-- 颜色说明 -->
<div style="
background-color: rgba(255,255,255,0.7);
padding: 15px;
border-radius: 10px;
margin-bottom: 20px;
">
<h4 style="color: #5B5B5B; margin-bottom: 10px;">Color Legend:</h4>
<div style="display: flex; flex-wrap: wrap; gap: 15px;">
<span style="color: #4CAF50; font-weight: bold;">🟢 Green: No Issues</span>
<span style="color: #FFC107; font-weight: bold;">🟡 Yellow: Minor Issues</span>
<span style="color: #FF9800; font-weight: bold;">🟠 Orange: Moderate Issues</span>
<span style="color: #F44336; font-weight: bold;">🔴 Red: Serious Issues</span>
</div>
</div>
<!-- 标注内容 -->
<div style="
background-color: rgba(255,255,255,0.5);
padding: 20px;
border-radius: 10px;
margin-bottom: 20px;
">
{annotated_html}
</div>
<div style="
text-align: center;
color: #4A7C59;
font-size: 16px;
font-weight: bold;
padding: 15px;
background-color: rgba(74, 124, 89, 0.1);
border-radius: 8px;
">✅ Step 2 Complete, generating revised version...</div>
</div>
</div>
"""
# 生成整改后的文本对比版(第三次输出)
def generate_revised_text_card(original_text: str, analysis_result: Dict) -> str:
"""生成整改后的文本对比版"""
revised_text = analysis_result.get("revised_text", original_text)
# 简单的句子对比(按句号分割)
original_sentences = [s.strip() + "。" for s in original_text.split("。") if s.strip()]
revised_sentences = [s.strip() + "。" for s in revised_text.split("。") if s.strip()]
# 生成对比HTML
comparison_html = ""
max_len = max(len(original_sentences), len(revised_sentences))
for i in range(max_len):
orig_sentence = original_sentences[i] if i < len(original_sentences) else ""
rev_sentence = revised_sentences[i] if i < len(revised_sentences) else ""
# 判断是否有变化
is_changed = orig_sentence != rev_sentence
sentence_color = "#4CAF50" if not is_changed else "#333"
if rev_sentence:
comparison_html += f"""
<div style="
margin: 15px 0;
padding: 15px;
border-left: 4px solid {sentence_color};
background-color: rgba(76, 175, 80, {'0.1' if not is_changed else '0.05'});
border-radius: 8px;
">
<p style="
color: {sentence_color};
font-size: 18px;
line-height: 1.6;
margin: 0;
font-weight: {'bold' if not is_changed else 'normal'};
">{rev_sentence}</p>
{f'''
<div style="
color: #666;
font-size: 14px;
margin-top: 10px;
padding: 10px;
background-color: rgba(255,255,255,0.7);
border-radius: 5px;
">
<strong>Original:</strong> {orig_sentence}
</div>
''' if is_changed else ''}
</div>
"""
return f"""
<div style="
max-width: 900px;
margin: 0 auto;
padding: 30px;
background: linear-gradient(135deg, #E8E3DE 0%, #F2EDE9 100%);
border-radius: 20px;
font-family: 'Microsoft YaHei', 'Noto Sans SC', sans-serif;
margin-bottom: 25px;
">
<div style="
background-color: #F2EDE9;
border-radius: 15px;
padding: 25px;
box-shadow: 0 10px 30px rgba(0,0,0,0.1);
">
<h2 style="
color: #5B5B5B;
margin-bottom: 20px;
font-size: 28px;
border-bottom: 3px solid #9A8F8F;
padding-bottom: 10px;
">✨ Step 3: Revised Text</h2>
<!-- 说明 -->
<div style="
background-color: rgba(255,255,255,0.7);
padding: 15px;
border-radius: 10px;
margin-bottom: 20px;
">
<h4 style="color: #5B5B5B; margin-bottom: 10px;">Legend:</h4>
<p style="color: #4CAF50; font-weight: bold; margin: 5px 0;">🟢 Green Bold: Unchanged sentences (compliant)</p>
<p style="color: #333; margin: 5px 0;">⚫ Normal: Modified sentences (with original shown below)</p>
</div>
<!-- 修改后的文本 -->
<div style="
background-color: rgba(255,255,255,0.5);
padding: 20px;
border-radius: 10px;
margin-bottom: 20px;
">
{comparison_html}
</div>
<div style="
text-align: center;
color: #4A7C59;
font-size: 18px;
font-weight: bold;
padding: 20px;
background-color: rgba(74, 124, 89, 0.1);
border-radius: 8px;
">🎉 All Steps Complete! Content audit finished.</div>
</div>
</div>
"""
# Create Gradio Blocks interface for better control
with gr.Blocks(
title="🛡️ AdGuardian - AI Advertising Compliance Agent",
theme=gr.themes.Soft()
) as demo:
gr.Markdown("""
# 🛡️ AdGuardian - AI Advertising Compliance Agent
**Multi-Country · Multi-Language · Three-Stage Analysis · AI-Driven Version**
This system uses advanced AI analysis to ensure advertising compliance across different countries and languages.
Powered by multiple language models for intelligent advertising content understanding and regulatory compliance.
""")
with gr.Row():
with gr.Column(scale=1):
# 主要输入
text_input = gr.Textbox(
label="Text to Audit",
placeholder="Please enter the text content to be audited...",
lines=8
)
keywords_input = gr.Textbox(
label="Keywords (Optional)",
placeholder="Please enter keywords to mark, separated by commas",
lines=2
)
# 新增选项
with gr.Row():
country_select = gr.Dropdown(
label="Regulatory Standards",
choices=["China", "USA", "UK", "Japan", "Korea", "Singapore", "Malaysia", "Other"],
value="USA"
)
language_select = gr.Dropdown(
label="Response Language",
choices=["简体中文", "繁体中文", "English", "日本語", "한국어"],
value="English"
)
with gr.Row():
model_select = gr.Dropdown(
label="AI Model",
choices=[
"Qwen/Qwen3-8B (Free - SiliconFlow)",
"deepseek-ai/DeepSeek-V3-0324 (Paid - Nebius)",
"deepseek-ai/DeepSeek-R1-0528 (Paid - Nebius)",
"Qwen/Qwen3-235B-A22B (Paid - Nebius)",
"google/gemma-3-27b-it (Paid - Nebius, Vision)"
],
value="Qwen/Qwen3-8B (Free - SiliconFlow)"
)
# 控制按钮
with gr.Row():
submit_btn = gr.Button("🚀 Start AI Analysis", variant="primary", scale=2)
clear_btn = gr.Button("🗑️ Clear", variant="secondary", scale=1)
with gr.Column(scale=2):
# 输出区域 - 四个标签页
with gr.Tabs():
with gr.TabItem("🔍 Stage 1: Basic Analysis"):
stage1_output = gr.HTML(
value="<div style='text-align: center; padding: 50px; color: #888;'>Stage 1 results will appear here...</div>",
label="Stage 1 Results"
)
with gr.TabItem("🎨 Stage 2: Detailed Annotation"):
stage2_output = gr.HTML(
value="<div style='text-align: center; padding: 50px; color: #888;'>Stage 2 results will appear here...</div>",
label="Stage 2 Results"
)
with gr.TabItem("✨ Stage 3: Revision Suggestions"):
stage3_output = gr.HTML(
value="<div style='text-align: center; padding: 50px; color: #888;'>Stage 3 results will appear here...</div>",
label="Stage 3 Results"
)
with gr.TabItem("📊 Summary"):
summary_output = gr.HTML(
value="<div style='text-align: center; padding: 50px; color: #888;'>Analysis summary will appear here...</div>",
label="Summary"
)
# 示例区域
gr.Markdown("### 📋 Examples")
with gr.Row():
example1_btn = gr.Button("📝 Example 1: Beauty Product (EN)", size="sm")
example2_btn = gr.Button("⚡ Example 2: Energy Drink (EN)", size="sm")
example3_btn = gr.Button("🏠 Example 3: Real Estate (中文)", size="sm")
# 事件处理 - 使用四个输出
submit_btn.click(
fn=comprehensive_text_audit_streaming,
inputs=[text_input, keywords_input, country_select, language_select, model_select],
outputs=[stage1_output, stage2_output, stage3_output, summary_output]
)
clear_btn.click(
fn=lambda: ("", "", "USA", "English", "Qwen/Qwen3-8B (Free - SiliconFlow)",
"<div style='text-align: center; padding: 50px; color: #888;'>Stage 1 results will appear here...</div>",
"<div style='text-align: center; padding: 50px; color: #888;'>Stage 2 results will appear here...</div>",
"<div style='text-align: center; padding: 50px; color: #888;'>Stage 3 results will appear here...</div>",
"<div style='text-align: center; padding: 50px; color: #888;'>Analysis summary will appear here...</div>"),
outputs=[text_input, keywords_input, country_select, language_select, model_select, stage1_output, stage2_output, stage3_output, summary_output]
)
# 示例按钮事件处理
example1_btn.click(
fn=lambda: ("Revolutionary Anti-Aging Serum - Guaranteed to eliminate all wrinkles within 24 hours! Our scientifically proven formula contains 100% natural ingredients that will make you look 20 years younger instantly. Thousands of customers have experienced miraculous results overnight. This breakthrough serum is the ultimate solution for aging skin and will completely transform your appearance forever. No other product can match our incredible effectiveness.",
"anti-aging, wrinkles, natural, guaranteed", "USA", "English"),
outputs=[text_input, keywords_input, country_select, language_select]
)
example2_btn.click(
fn=lambda: ("SuperBoost Energy Drink - The most powerful energy formula ever created! Increases your energy levels by 800% and keeps you alert for 48 hours straight without any crash. Our secret blend of natural caffeine and exotic herbs will revolutionize your productivity forever. Professional athletes choose our drink because it's the only one that delivers real results. Completely safe and approved by leading sports scientists worldwide. One sip will change your life permanently.",
"energy drink, caffeine, performance, athletes", "USA", "English"),
outputs=[text_input, keywords_input, country_select, language_select]
)
example3_btn.click(
fn=lambda: ("豪华市中心公寓 - 史上最佳投资机会!该地区房产价值在过去一年中增长了1000%,绝对会继续上涨。这是千载难逢的致富机会,我们的独家开发项目保证年回报率50%。不要错过这个令人难以置信的交易,它将让您超越梦想变得富有!限时优惠,仅剩50个名额。立即加入,马上开始每周赚取10万元。成功有保障,我们的系统绝对可靠。",
"房地产, 投资, 保证回报, 豪华", "China", "简体中文"),
outputs=[text_input, keywords_input, country_select, language_select]
)
if __name__ == "__main__":
demo.launch(
max_threads=5, # 增加并发线程数到5
show_error=True, # 显示错误信息
share=False # HF Space不需要share
)
|