File size: 8,576 Bytes
f985823
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
# app.py - For Hugging Face Spaces (without Modal)
import gradio as gr
from transformers import pipeline
import torch
from functools import lru_cache
import logging

# Setup logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

class TextAnalyzer:
    def __init__(self):
        """Initialize models"""
        self.device = 0 if torch.cuda.is_available() else -1
        logger.info(f"Using device: {'GPU' if self.device == 0 else 'CPU'}")
        
        # Load models
        logger.info("Loading models...")
        self.load_models()
        logger.info("βœ… All models loaded successfully!")
    
    def load_models(self):
        """Load all required models"""
        try:
            # Use smaller, faster models for Hugging Face Spaces
            self.sentiment_analyzer = pipeline(
                "sentiment-analysis",
                model="distilbert-base-uncased-finetuned-sst-2-english",
                device=self.device
            )
            
            # Use a smaller summarization model
            self.summarizer = pipeline(
                "summarization",
                model="sshleifer/distilbart-cnn-12-6",
                device=self.device
            )
            
            # Simple language detection (or skip if too slow)
            try:
                self.language_detector = pipeline(
                    "text-classification",
                    model="papluca/xlm-roberta-base-language-detection",
                    device=self.device
                )
                self.has_language_detection = True
            except:
                self.has_language_detection = False
                logger.warning("Language detection model not loaded")
            
        except Exception as e:
            logger.error(f"Error loading models: {e}")
            raise
    
    @lru_cache(maxsize=64)
    def cached_analyze(self, text_hash: str, text: str):
        """Cache results for identical inputs"""
        return self._analyze_text(text)
    
    def _analyze_text(self, text: str):
        """Core analysis logic"""
        # Basic statistics
        words = text.split()
        word_count = len(words)
        char_count = len(text)
        
        # Limit text length for models
        text_limited = text[:512]
        
        try:
            # Sentiment analysis
            sentiment_result = self.sentiment_analyzer(text_limited)[0]
            
            # Language detection (if available)
            language_result = None
            if self.has_language_detection:
                try:
                    language_result = self.language_detector(text_limited)[0]
                except:
                    language_result = None
            
            # Summarization (only for longer texts)
            summary = ""
            if word_count > 50:
                try:
                    summary_result = self.summarizer(
                        text, 
                        max_length=min(100, word_count // 3),
                        min_length=20,
                        do_sample=False
                    )
                    summary = summary_result[0]["summary_text"]
                except Exception as e:
                    summary = f"Unable to generate summary: {str(e)}"
            else:
                summary = "Text too short for summarization (minimum 50 words)"
            
            return {
                "sentiment": {
                    "label": sentiment_result["label"],
                    "confidence": round(sentiment_result["score"], 3)
                },
                "language": {
                    "language": language_result["label"] if language_result else "Unknown",
                    "confidence": round(language_result["score"], 3) if language_result else 0
                } if self.has_language_detection else {"language": "Detection disabled", "confidence": 0},
                "summary": summary,
                "stats": {
                    "word_count": word_count,
                    "char_count": char_count,
                    "sentence_count": len([s for s in text.split('.') if s.strip()])
                }
            }
            
        except Exception as e:
            logger.error(f"Analysis error: {e}")
            return {
                "error": f"Analysis failed: {str(e)}",
                "stats": {"word_count": word_count, "char_count": char_count}
            }
    
    def analyze(self, text: str):
        """Public analyze method with caching"""
        if not text or not text.strip():
            return None
            
        # Create hash for caching
        text_hash = str(hash(text.strip()))
        return self.cached_analyze(text_hash, text.strip())

# Initialize analyzer
logger.info("Initializing Text Analyzer...")
try:
    analyzer = TextAnalyzer()
    analyzer_loaded = True
except Exception as e:
    logger.error(f"Failed to load analyzer: {e}")
    analyzer_loaded = False

def gradio_interface(text):
    """Gradio interface function"""
    if not analyzer_loaded:
        return (
            "❌ Models failed to load. Please try again later.",
            "❌ Error",
            "❌ Error", 
            "❌ Error",
            "❌ Error"
        )
    
    if not text or not text.strip():
        return (
            "Please enter some text to analyze.",
            "No text provided",
            "No text provided",
            "No text provided",
            "No text provided"
        )
    
    # Analyze text
    results = analyzer.analyze(text)
    
    if not results or "error" in results:
        error_msg = results.get("error", "Unknown error occurred") if results else "Analysis failed"
        return error_msg, "Error", "Error", "Error", "Error"
    
    # Format results
    sentiment_text = f"**{results['sentiment']['label']}** (confidence: {results['sentiment']['confidence']})"
    
    language_text = f"**{results['language']['language']}**"
    if results['language']['confidence'] > 0:
        language_text += f" (confidence: {results['language']['confidence']})"
    
    summary_text = results['summary']
    
    stats_text = f"Words: {results['stats']['word_count']} | Characters: {results['stats']['char_count']} | Sentences: {results['stats'].get('sentence_count', 'N/A')}"
    
    return sentiment_text, language_text, summary_text, stats_text, "βœ… Analysis complete!"

# Create Gradio interface
def create_app():
    """Create the Gradio application"""
    with gr.Blocks(
        title="Smart Text Analyzer",
        theme=gr.themes.Soft()
    ) as demo:
        
        gr.Markdown("""
        # 🧠 Smart Text Analyzer
        **Analyze text for sentiment, language, and generate summaries**
        
        *Powered by Hugging Face Transformers*
        """)
        
        with gr.Row():
            with gr.Column():
                text_input = gr.Textbox(
                    label="πŸ“ Enter your text",
                    placeholder="Type or paste your text here for analysis...",
                    lines=6
                )
                analyze_btn = gr.Button("πŸ” Analyze Text", variant="primary")
        
        with gr.Row():
            with gr.Column():
                sentiment_output = gr.Markdown(label="😊 Sentiment")
                language_output = gr.Markdown(label="🌍 Language")
            with gr.Column():
                stats_output = gr.Markdown(label="πŸ“Š Statistics")
                status_output = gr.Textbox(label="Status", interactive=False)
        
        summary_output = gr.Textbox(
            label="πŸ“ Summary",
            lines=3,
            interactive=False
        )
        
        # Examples
        gr.Examples(
            examples=[
                ["I absolutely love this new restaurant! The food was incredible and the service was outstanding."],
                ["Climate change represents one of the most significant challenges of our time. Rising global temperatures are causing widespread environmental disruption."],
                ["This movie was disappointing. The plot was confusing and the acting was poor."]
            ],
            inputs=text_input
        )
        
        analyze_btn.click(
            fn=gradio_interface,
            inputs=text_input,
            outputs=[sentiment_output, language_output, summary_output, stats_output, status_output]
        )
    
    return demo

if __name__ == "__main__":
    # Create and launch the app
    app = create_app()
    app.launch()