File size: 35,924 Bytes
d056a59 d1beaff d056a59 d1beaff d056a59 d1beaff d056a59 d1beaff d056a59 f5757ad |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 |
import os
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForCausalLM
import torch
from datetime import datetime
import gradio as gr
from typing import Dict, List, Union, Optional
import logging
import traceback
import asyncio
import httpx
import subprocess
import atexit
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Start the API server
def start_api_server():
# Start uvicorn in a subprocess
process = subprocess.Popen(["uvicorn", "script_search_api:app", "--reload"])
return process
# Stop the API server
def stop_api_server(process):
process.terminate()
# Register the exit handler
api_process = start_api_server()
atexit.register(stop_api_server, api_process)
class FlanT5Analyzer:
"""Fast and efficient analyzer using FLAN-T5"""
def __init__(self):
self.device = "cuda" if torch.cuda.is_available() else "cpu"
self.model = None
self.tokenizer = None
self.batch_size = 4
self.trigger_categories = {
"Violence": {
"mapped_name": "Violence",
"description": (
"Any act involving physical force or aggression intended to cause harm, injury, or death to a person, animal, or object. "
"Includes direct physical confrontations (e.g., fights, beatings, or assaults), implied violence (e.g., very graphical threats or descriptions of injuries), "
"or large-scale events like wars, riots, or violent protests."
)
},
"Death": {
"mapped_name": "Death References",
"description": (
"Any mention, implication, or depiction of the loss of life, including direct deaths of characters, including mentions of deceased individuals, "
"or abstract references to mortality (e.g., 'facing the end' or 'gone forever'). This also covers depictions of funerals, mourning, "
"grieving, or any dialogue that centers around death, do not take metaphors into context that don't actually lead to death."
)
},
"Substance_Use": {
"mapped_name": "Substance Use",
"description": (
"Any explicit reference to the consumption, misuse, or abuse of drugs, alcohol, or other intoxicating substances. "
"This includes scenes of drug use, drinking, smoking, discussions about heavy substance abuse or substance-related paraphernalia."
)
},
"Gore": {
"mapped_name": "Gore",
"description": (
"Extremely detailed and graphic depictions of highly severe physical injuries, mutilation, or extreme bodily harm, often accompanied by descriptions of heavy blood, exposed organs, "
"or dismemberment. This includes war scenes with severe casualties, horror scenarios involving grotesque creatures, or medical procedures depicted with excessive detail."
)
},
"Sexual_Content": {
"mapped_name": "Sexual Content",
"description": (
"Any depiction of sexual activity, intimacy, or sexual behavior, ranging from implied scenes to explicit descriptions. "
"This includes physical descriptions of characters in a sexual context, sexual dialogue, or references to sexual themes."
)
},
"Sexual_Abuse": {
"mapped_name": "Sexual Abuse",
"description": (
"Any form of non-consensual sexual act, behavior, or interaction, involving coercion, manipulation, or physical force. "
"This includes incidents of sexual assault, exploitation, harassment, and any acts where an individual is subjected to sexual acts against their will."
)
},
"Self_Harm": {
"mapped_name": "Self-Harm",
"description": (
"Any mention or depiction of behaviors where an individual intentionally causes harm to themselves. This includes cutting, burning, or other forms of physical injury, "
"as well as suicidal ideation, suicide attempts, or discussions of self-destructive thoughts and actions."
)
},
"Mental_Health": {
"mapped_name": "Mental Health Issues",
"description": (
"Any reference to extreme mental health struggles, disorders, or psychological distress. This includes depictions of depression, anxiety, PTSD, bipolar disorder, "
"or other conditions. Also includes toxic traits such as Gaslighting or other psychological horrors"
)
}
}
logger.info(f"Initialized FLAN-T5 analyzer with device: {self.device}")
async def load_model(self, progress=None) -> None:
"""Load the model and tokenizer with progress updates."""
try:
if progress:
progress(0.1, "π© Loading tokenizer...")
self.tokenizer = AutoTokenizer.from_pretrained(
"google/flan-t5-base",
use_fast=True
)
if progress:
progress(0.3, "π° Loading model...")
self.model = AutoModelForSeq2SeqLM.from_pretrained(
"google/flan-t5-base",
torch_dtype=torch.float16 if self.device == "cuda" else torch.float32,
device_map="auto"
)
if self.device == "cuda":
self.model.eval()
torch.cuda.empty_cache()
if progress:
progress(0.5, "π§ Model loaded successfully")
except Exception as e:
logger.error(f"Error loading model: {str(e)}")
raise
def _chunk_text(self, text: str, chunk_size: int = 512, overlap: int = 30) -> List[str]:
"""Split text into overlapping chunks."""
words = text.split()
chunks = []
for i in range(0, len(words), chunk_size - overlap):
chunk = ' '.join(words[i:i + chunk_size])
chunks.append(chunk)
return chunks
def _validate_response(self, response: str) -> str:
"""Validate and clean model response."""
valid_responses = {"YES", "NO", "MAYBE"}
response = response.strip().upper()
first_word = response.split()[0] if response else "NO"
return first_word if first_word in valid_responses else "NO"
async def analyze_chunks_batch(
self,
chunks: List[str],
progress: Optional[gr.Progress] = None,
current_progress: float = 0,
progress_step: float = 0
) -> Dict[str, float]:
"""Analyze multiple chunks in batches."""
all_triggers = {}
for category, info in self.trigger_categories.items():
mapped_name = info["mapped_name"]
description = info["description"]
for i in range(0, len(chunks), self.batch_size):
batch_chunks = chunks[i:i + self.batch_size]
prompts = []
for chunk in batch_chunks:
prompt = f"""
Task: Analyze if this text contains {mapped_name}.
Context: {description}
Text: "{chunk}"
Rules for analysis:
1. Only answer YES if there is clear, direct evidence
2. Answer NO if the content is ambiguous or metaphorical
3. Consider the severity and context
Answer with ONLY ONE word: YES, NO, or MAYBE
"""
prompts.append(prompt)
try:
inputs = self.tokenizer(
prompts,
return_tensors="pt",
padding=True,
truncation=True,
max_length=512
).to(self.device)
with torch.no_grad():
outputs = self.model.generate(
**inputs,
max_new_tokens=20,
temperature=0.2,
top_p=0.85,
num_beams=3,
early_stopping=True,
pad_token_id=self.tokenizer.eos_token_id,
do_sample=True
)
responses = [
self.tokenizer.decode(output, skip_special_tokens=True)
for output in outputs
]
for response in responses:
validated_response = self._validate_response(response)
if validated_response == "YES":
all_triggers[mapped_name] = all_triggers.get(mapped_name, 0) + 1
elif validated_response == "MAYBE":
all_triggers[mapped_name] = all_triggers.get(mapped_name, 0) + 0.5
except Exception as e:
logger.error(f"Error processing batch for {mapped_name}: {str(e)}")
continue
if progress:
current_progress += progress_step
progress(min(current_progress, 0.9), f"π Analyzing {mapped_name}...")
return all_triggers
async def analyze_script(self, script: str, progress: Optional[gr.Progress] = None) -> List[str]:
"""Analyze the entire script."""
if not self.model or not self.tokenizer:
await self.load_model(progress)
chunks = self._chunk_text(script)
identified_triggers = await self.analyze_chunks_batch(
chunks,
progress,
current_progress=0.5,
progress_step=0.4 / (len(chunks) * len(self.trigger_categories))
)
if progress:
progress(0.95, "π« Finalizing results...")
final_triggers = []
chunk_threshold = max(1, len(chunks) * 0.1)
for mapped_name, count in identified_triggers.items():
if count >= chunk_threshold:
final_triggers.append(mapped_name)
return final_triggers if final_triggers else ["None"]
class LlamaAnalyzer:
"""Detailed analyzer using Llama for thorough analysis"""
def __init__(self):
self.hf_token = os.getenv("HF_TOKEN")
if not self.hf_token:
raise ValueError("HF_TOKEN environment variable is not set!")
self.device = "cuda" if torch.cuda.is_available() else "cpu"
self.model = None
self.tokenizer = None
logger.info(f"Initialized Llama analyzer with device: {self.device}")
async def load_model(self, progress=None) -> None:
"""Load the model and tokenizer with progress updates and detailed logging."""
try:
print("\n=== Starting Llama Model Loading ===")
print(f"Time: {datetime.now()}")
if progress:
progress(0.1, "π© Loading Llama tokenizer...")
print("Loading tokenizer...")
self.tokenizer = AutoTokenizer.from_pretrained(
"meta-llama/Llama-3.2-3B",
use_fast=True
)
if progress:
progress(0.3, "π° Loading Llama model...")
print(f"Loading model on {self.device}...")
self.model = AutoModelForCausalLM.from_pretrained(
"meta-llama/Llama-3.2-3B",
token=self.hf_token,
torch_dtype=torch.float16 if self.device == "cuda" else torch.float32,
device_map="auto"
)
if progress:
progress(0.5, "π§ Llama model loaded successfully")
print("Model and tokenizer loaded successfully")
logger.info(f"Model loaded successfully on {self.device}")
except Exception as e:
logger.error(f"Error loading model: {str(e)}")
print(f"\nERROR DURING MODEL LOADING: {str(e)}")
print("Stack trace:")
traceback.print_exc()
raise
def _chunk_text(self, text: str, chunk_size: int = 256, overlap: int = 15) -> List[str]:
"""Split text into overlapping chunks for processing."""
chunks = []
for i in range(0, len(text), chunk_size - overlap):
chunk = text[i:i + chunk_size]
chunks.append(chunk)
print(f"Split text into {len(chunks)} chunks with {overlap} token overlap")
return chunks
async def analyze_chunk(
self,
chunk: str,
trigger_categories: Dict,
progress: Optional[gr.Progress] = None,
current_progress: float = 0,
progress_step: float = 0
) -> Dict[str, float]:
"""Analyze a single chunk of text for triggers with detailed logging."""
chunk_triggers = {}
print(f"\n--- Processing Chunk ---")
print(f"Chunk text (preview): {chunk[:50]}...")
for category, info in trigger_categories.items():
mapped_name = info["mapped_name"]
description = info["description"]
print(f"\nAnalyzing for {mapped_name}...")
prompt = f"""
Check this text for any clear indication of {mapped_name} ({description}).
only say yes if you are confident, make sure the text is not metaphorical.
Respond concisely and only with: YES, NO, or MAYBE.
Text: {chunk}
Answer:
"""
try:
print("Sending prompt to model...")
inputs = self.tokenizer(prompt, return_tensors="pt", truncation=True, max_length=512)
inputs = {k: v.to(self.device) for k, v in inputs.items()}
with torch.no_grad():
print("Generating response...")
outputs = self.model.generate(
**inputs,
max_new_tokens=2,
do_sample=True,
temperature=0.3,
top_p=0.9,
pad_token_id=self.tokenizer.eos_token_id
)
response_text = self.tokenizer.decode(outputs[0], skip_special_tokens=True).strip().upper()
first_word = response_text.split("\n")[-1].split()[0] if response_text else "NO"
print(f"Model response for {mapped_name}: {first_word}")
if first_word == "YES":
print(f"Detected {mapped_name} in this chunk!")
chunk_triggers[mapped_name] = chunk_triggers.get(mapped_name, 0) + 1
elif first_word == "MAYBE":
print(f"Possible {mapped_name} detected, marking for further review.")
chunk_triggers[mapped_name] = chunk_triggers.get(mapped_name, 0) + 0.5
else:
print(f"No {mapped_name} detected in this chunk.")
if progress:
current_progress += progress_step
progress(min(current_progress, 0.9), f"π Analyzing {mapped_name}...")
except Exception as e:
logger.error(f"Error analyzing chunk for {mapped_name}: {str(e)}")
print(f"Error during analysis of {mapped_name}: {str(e)}")
traceback.print_exc()
return chunk_triggers
async def analyze_script(self, script: str, progress: Optional[gr.Progress] = None) -> List[str]:
"""Analyze the entire script for triggers with progress updates and detailed logging."""
print("\n=== Starting Script Analysis ===")
print(f"Time: {datetime.now()}")
if not self.model or not self.tokenizer:
await self.load_model(progress)
# Initialize trigger categories
trigger_categories = {
"Violence": {
"mapped_name": "Violence",
"description": (
"Any act of physical force meant to cause harm, injury, or death, including fights, threats, and large-scale violence like wars or riots."
)
},
"Death": {
"mapped_name": "Death References",
"description": (
"Mentions or depictions of death, such as characters dying, references to deceased people, funerals, or mourning."
)
},
"Substance Use": {
"mapped_name": "Substance Use",
"description": (
"Any reference to using or abusing drugs, alcohol, or other substances, including scenes of drinking, smoking, or drug use."
)
},
"Gore": {
"mapped_name": "Gore",
"description": (
"Graphic depictions of severe injuries or mutilation, often with detailed blood, exposed organs, or dismemberment."
)
},
"Vomit": {
"mapped_name": "Vomit",
"description": (
"Any explicit reference to vomiting or related actions. This includes only very specific mentions of nausea or the act of vomiting, with more focus on the direct description, only flag this if you absolutely believe it's present."
)
},
"Sexual Content": {
"mapped_name": "Sexual Content",
"description": (
"Depictions or mentions of sexual activity, intimacy, or behavior, including sexual themes like harassment or innuendo."
)
},
"Sexual Abuse": {
"mapped_name": "Sexual Abuse",
"description": (
"Explicit non-consensual sexual acts, including assault, molestation, or harassment, and the emotional or legal consequences of such abuse. A stronger focus on detailed depictions or direct references to coercion or violence."
)
},
"Self-Harm": {
"mapped_name": "Self-Harm",
"description": (
"Depictions or mentions of intentional self-injury, including acts like cutting, burning, or other self-destructive behavior. Emphasis on more graphic or repeated actions, not implied or casual references."
)
},
"Gun Use": {
"mapped_name": "Gun Use",
"description": (
"Explicit mentions of firearms in use, including threatening actions or accidents involving guns. Only triggers when the gun use is shown in a clear, violent context."
)
},
"Animal Cruelty": {
"mapped_name": "Animal Cruelty",
"description": (
"Direct or explicit harm, abuse, or neglect of animals, including physical abuse or suffering, and actions performed for human entertainment or experimentation. Triggers only in clear, violent depictions."
)
},
"Mental Health Issues": {
"mapped_name": "Mental Health Issues",
"description": (
"References to psychological struggles, such as depression, anxiety, or PTSD, including therapy or coping mechanisms."
)
}
}
chunks = self._chunk_text(script)
identified_triggers = {}
progress_step = 0.4 / (len(chunks) * len(trigger_categories))
current_progress = 0.5 # Starting after model loading
for chunk_idx, chunk in enumerate(chunks, 1):
chunk_triggers = await self.analyze_chunk(
chunk,
trigger_categories,
progress,
current_progress,
progress_step
)
for trigger, count in chunk_triggers.items():
identified_triggers[trigger] = identified_triggers.get(trigger, 0) + count
if progress:
progress(0.95, "π« Finalizing detailed results...")
print("\n=== Analysis Complete ===")
print("Final Results:")
final_triggers = []
for mapped_name, count in identified_triggers.items():
if count > 0.5:
final_triggers.append(mapped_name)
print(f"- {mapped_name}: found in {count} chunks")
if not final_triggers:
print("No triggers detected")
final_triggers = ["None"]
return final_triggers
async def analyze_content_flant5(
script: str,
progress: Optional[gr.Progress] = None
) -> Dict[str, Union[List[str], str]]:
"""Main analysis function using FLAN-T5."""
logger.info("Starting FLAN-T5 content analysis")
analyzer = FlanT5Analyzer()
try:
triggers = await analyzer.analyze_script(script, progress)
if progress:
progress(1.0, "π Analysis complete!")
result = {
"detected_triggers": triggers,
"confidence": "High - Content detected" if triggers != ["None"] else "High - No concerning content detected",
"model": "google/flan-t5-base",
"analysis_timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S")
}
logger.info(f"Analysis complete: {result}")
return result
except Exception as e:
logger.error(f"Analysis error: {str(e)}")
return {
"detected_triggers": ["Error occurred during analysis"],
"confidence": "Error",
"model": "google/flan-t5-base",
"analysis_timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
"error": str(e)
}
async def analyze_content_llama(
script: str,
progress: Optional[gr.Progress] = None
) -> Dict[str, Union[List[str], str]]:
"""Main analysis function using Llama for detailed analysis."""
print("\n=== Starting Llama Content Analysis ===")
print(f"Time: {datetime.now()}")
analyzer = LlamaAnalyzer()
try:
triggers = await analyzer.analyze_script(script, progress)
if progress:
progress(1.0, "π Detailed analysis complete!")
result = {
"detected_triggers": triggers,
"confidence": "High - Content detected" if triggers != ["None"] else "High - No concerning content detected",
"model": "Llama-3.2-3B",
"analysis_timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S")
}
print("\nFinal Result Dictionary:", result)
return result
except Exception as e:
logger.error(f"Analysis error: {str(e)}")
print(f"\nERROR OCCURRED: {str(e)}")
print("Stack trace:")
traceback.print_exc()
return {
"detected_triggers": ["Error occurred during analysis"],
"confidence": "Error",
"model": "Llama-3.2-3B",
"analysis_timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
"error": str(e)
}
async def search_movie_script(movie_name: str) -> Dict:
"""Search for and analyze a movie script using the API service."""
async with httpx.AsyncClient() as client:
try:
# Start search
response = await client.post(
"http://localhost:8000/search",
json={"movie_name": movie_name}
)
response.raise_for_status()
task_data = response.json()
task_id = task_data["task_id"]
# Poll for results
while True:
status_response = await client.get(f"http://localhost:8000/progress/{task_id}")
status_response.raise_for_status()
status_data = status_response.json()
if status_data["is_complete"]:
if status_data["error"]:
return {"error": status_data["error"]}
return status_data["result"]
await asyncio.sleep(1)
except Exception as e:
return {"error": f"Error during movie search: {str(e)}"}
# CSS animations for movie search tab
movie_search_html = """
<div style="text-align: center; padding: 15px;">
<h3>π¬ Movie Script Analysis</h3>
<p style="color: #ffffff;">Search and analyze movie scripts for content warnings</p>
</div>
"""
# Custom CSS for Monochrome theme with subtle animations
custom_css = """
/* Monochrome Black Theme */
body, .gradio-container {
background: #000000 !important;
color: #ffffff !important;
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
}
/* Subtle animated background */
.gradio-container::before {
content: '';
position: fixed;
top: 0;
left: 0;
width: 100%;
height: 100%;
background:
radial-gradient(circle at 20% 20%, rgba(255, 255, 255, 0.02) 0%, transparent 30%),
radial-gradient(circle at 80% 80%, rgba(255, 255, 255, 0.02) 0%, transparent 30%),
radial-gradient(circle at 40% 60%, rgba(255, 255, 255, 0.01) 0%, transparent 40%);
animation: subtle-float 30s ease-in-out infinite;
pointer-events: none;
z-index: -1;
}
@keyframes subtle-float {
0%, 100% { transform: translateY(0px) rotate(0deg); }
50% { transform: translateY(-10px) rotate(1deg); }
}
/* Loading animation */
@keyframes spin {
0% { transform: rotate(0deg); }
100% { transform: rotate(360deg); }
}
.loading-spinner {
display: inline-block;
width: 40px;
height: 40px;
border: 4px solid rgba(255, 255, 255, 0.3);
border-radius: 50%;
border-top-color: #ffffff;
animation: spin 1s ease-in-out infinite;
}
/* Progress bar styling */
.progress-bar {
background: linear-gradient(90deg, #333333, #ffffff, #333333) !important;
border-radius: 20px !important;
animation: progress-pulse 2s ease-in-out infinite alternate;
}
@keyframes progress-pulse {
from { opacity: 0.7; }
to { opacity: 1; }
}
/* Input and output styling */
.gr-textbox, .gr-json {
background: rgba(255, 255, 255, 0.05) !important;
border: 2px solid rgba(255, 255, 255, 0.2) !important;
border-radius: 8px !important;
color: #ffffff !important;
transition: all 0.3s ease !important;
}
.gr-textbox:focus, .gr-json:focus {
border-color: rgba(255, 255, 255, 0.4) !important;
box-shadow: 0 0 10px rgba(255, 255, 255, 0.1) !important;
background: rgba(255, 255, 255, 0.08) !important;
}
/* Button styling */
.gr-button {
background: linear-gradient(45deg, #333333, #555555) !important;
border: 2px solid rgba(255, 255, 255, 0.2) !important;
border-radius: 8px !important;
color: #ffffff !important;
font-weight: bold !important;
padding: 12px 24px !important;
transition: all 0.3s ease !important;
position: relative !important;
overflow: hidden !important;
}
.gr-button::before {
content: '';
position: absolute;
top: 50%;
left: 50%;
width: 0;
height: 0;
background: rgba(255, 255, 255, 0.1);
border-radius: 50%;
transform: translate(-50%, -50%);
transition: width 0.6s, height 0.6s;
}
.gr-button:hover::before {
width: 300px;
height: 300px;
}
.gr-button:hover {
background: linear-gradient(45deg, #555555, #777777) !important;
border-color: rgba(255, 255, 255, 0.4) !important;
transform: translateY(-2px) !important;
box-shadow: 0 8px 16px rgba(0, 0, 0, 0.3) !important;
}
/* Tab styling */
.gr-tab {
background: rgba(255, 255, 255, 0.05) !important;
border: 2px solid rgba(255, 255, 255, 0.2) !important;
border-radius: 8px 8px 0 0 !important;
color: #ffffff !important;
transition: all 0.3s ease !important;
}
.gr-tab:hover, .gr-tab.selected {
background: rgba(255, 255, 255, 0.1) !important;
border-color: rgba(255, 255, 255, 0.4) !important;
transform: translateY(-2px) !important;
}
/* Title styling */
h1, h2, h3 {
color: #ffffff !important;
text-align: center;
margin: 20px 0;
text-shadow: 0 0 10px rgba(255, 255, 255, 0.3);
animation: title-fade 4s ease-in-out infinite alternate;
}
@keyframes title-fade {
from { opacity: 0.9; }
to { opacity: 1; }
}
/* Emoji animations */
.sweet-emoji {
display: inline-block;
animation: gentle-bounce 3s ease-in-out infinite;
}
@keyframes gentle-bounce {
0%, 100% { transform: translateY(0); }
50% { transform: translateY(-5px); }
}
/* Container styling */
.gr-group {
background: rgba(255, 255, 255, 0.03) !important;
border: 1px solid rgba(255, 255, 255, 0.1) !important;
border-radius: 8px !important;
box-shadow: 0 4px 16px rgba(0, 0, 0, 0.2) !important;
}
/* JSON output styling */
.gr-json pre {
background: rgba(255, 255, 255, 0.05) !important;
border: 1px solid rgba(255, 255, 255, 0.2) !important;
border-radius: 8px !important;
color: #ffffff !important;
font-family: 'Fira Code', monospace !important;
}
/* Progress text styling */
.progress-text {
color: #ffffff !important;
font-weight: bold !important;
text-shadow: 0 0 5px rgba(255, 255, 255, 0.3) !important;
}
/* Label styling */
label {
color: #ffffff !important;
}
/* Paragraph styling */
p {
color: #ffffff !important;
}
/* Ensure all text is white */
* {
color: #ffffff !important;
}
/* Special styling for colored text elements */
.gr-textbox textarea, .gr-textbox input {
color: #ffffff !important;
background: transparent !important;
}
/* Placeholder text styling */
.gr-textbox textarea::placeholder, .gr-textbox input::placeholder {
color: rgba(255, 255, 255, 0.5) !important;
}
"""
if __name__ == "__main__":
# Create the Gradio interface with tabs
with gr.Blocks(
title="π© TREAT-CHOCOSYRUP π§ Content Analysis",
css=custom_css,
theme=gr.themes.Base()
) as app:
gr.HTML("""
<div style="text-align: center; padding: 20px;">
<h1 style="font-size: 3em; margin-bottom: 10px;">
π© TREAT-CHOCOSYRUP π§
</h1>
<h2 style="font-size: 1.5em; margin-top: 0;">
<span class="sweet-emoji">π</span> Content Analysis & Trigger Detection <span class="sweet-emoji">π°</span>
</h2>
</div>
""")
with gr.Tabs():
# Default FLAN-T5 Tab
with gr.Tab("π° Quick Analysis (FLAN-T5)", elem_id="flant5-tab"):
gr.HTML("""
<div style="text-align: center; padding: 15px;">
<h3>π Fast & Efficient Analysis</h3>
<p style="color: #ff9ff3;">Perfect for quick content screening with high accuracy</p>
</div>
""")
# Input and analyze button for FLAN-T5
with gr.Row():
text_input_flant5 = gr.Textbox(
lines=8,
label="Input Text",
placeholder="Enter your text here for analysis...",
elem_id="input-text-flant5"
)
with gr.Row():
analyze_button_flant5 = gr.Button("π Analyze Content", variant="primary")
clear_button_flant5 = gr.Button("π§Ή Clear", variant="secondary")
# Output area for FLAN-T5
output_json_flant5 = gr.JSON(label="Analysis Results")
# Button click events for FLAN-T5
analyze_button_flant5.click(
fn=analyze_content_flant5,
inputs=[text_input_flant5],
outputs=[output_json_flant5]
)
clear_button_flant5.click(
fn=lambda: ("", None),
inputs=[],
outputs=[text_input_flant5, output_json_flant5]
)
# Detailed Llama Analysis Tab
with gr.Tab("π¬ Detailed Analysis (Llama)", elem_id="llama-tab"):
gr.HTML("""
<div style="text-align: center; padding: 15px;">
<h3>π― Deep & Thorough Analysis</h3>
<p style="color: #4ecdc4;">Advanced analysis for comprehensive content evaluation</p>
</div>
""")
# Input and analyze button for Llama
with gr.Row():
text_input_llama = gr.Textbox(
lines=8,
label="Input Text",
placeholder="Enter your text here for detailed analysis...",
elem_id="input-text-llama"
)
with gr.Row():
analyze_button_llama = gr.Button("π Analyze Content (Detailed)", variant="primary")
clear_button_llama = gr.Button("π§Ή Clear", variant="secondary")
# Output area for Llama
output_json_llama = gr.JSON(label="Detailed Analysis Results")
# Button click events for Llama
analyze_button_llama.click(
fn=analyze_content_llama,
inputs=[text_input_llama],
outputs=[output_json_llama]
)
clear_button_llama.click(
fn=lambda: ("", None),
inputs=[],
outputs=[text_input_llama, output_json_llama]
)
# Movie Search and Analysis Tab
with gr.Tab("πΏ Agentic Movie Script Analysis", elem_id="movie-tab"):
gr.HTML(movie_search_html)
# Input for movie name
with gr.Row():
movie_name_input = gr.Textbox(
lines=1,
label="Movie Name",
placeholder="Enter the movie name to search and analyze...",
elem_id="movie-name-input"
)
# Analyze button for movie search
with gr.Row():
search_button = gr.Button("π Search & Analyze Movie", variant="primary")
clear_movie_button = gr.Button("π§Ή Clear", variant="secondary")
# Output area for movie analysis results
output_movie_json = gr.JSON(label="Movie Analysis Results")
# Button click events for movie search
search_button.click(
fn=search_movie_script,
inputs=[movie_name_input],
outputs=[output_movie_json]
)
clear_movie_button.click(
fn=lambda: ("", None),
inputs=[],
outputs=[movie_name_input, output_movie_json]
)
app.queue()
app.launch() |