File size: 127,119 Bytes
b27f98e
60af967
9d4ec19
60af967
9d4ec19
b27f98e
9d4ec19
60af967
9d4ec19
60af967
 
9d4ec19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
00a3133
 
9d4ec19
 
 
 
 
 
 
 
 
 
 
 
 
 
00a3133
 
9d4ec19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d029cd0
9d4ec19
 
 
00a3133
9d4ec19
 
 
 
 
 
 
 
 
 
00a3133
 
 
 
 
9d4ec19
 
 
 
00a3133
9d4ec19
 
 
60af967
 
9d4ec19
 
 
 
 
 
 
 
 
 
 
 
60af967
 
9d4ec19
 
 
 
 
 
60af967
 
9d4ec19
 
 
 
 
60af967
9d4ec19
60af967
9d4ec19
60af967
9d4ec19
 
 
 
 
 
 
 
60af967
9d4ec19
 
 
 
 
 
 
 
 
60af967
 
9d4ec19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60af967
 
9d4ec19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60af967
 
9d4ec19
 
 
 
 
 
 
60af967
9d4ec19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d029cd0
9d4ec19
 
 
60af967
9d4ec19
 
d029cd0
9d4ec19
 
 
 
60af967
9d4ec19
 
60af967
9d4ec19
 
 
 
 
 
60af967
9d4ec19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60af967
 
9d4ec19
 
 
60af967
9d4ec19
 
 
 
 
 
 
 
 
60af967
9d4ec19
60af967
9d4ec19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60af967
9d4ec19
 
 
 
 
 
18a47c7
9d4ec19
 
 
 
 
 
 
 
 
 
18a47c7
 
9d4ec19
 
 
 
 
 
 
 
 
 
60af967
18a47c7
9d4ec19
 
 
 
 
 
 
 
 
 
 
18a47c7
60af967
9d4ec19
 
 
 
 
 
 
60af967
9d4ec19
18a47c7
9d4ec19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18a47c7
9d4ec19
 
18a47c7
9d4ec19
 
 
18a47c7
 
9d4ec19
 
 
 
 
18a47c7
 
 
9d4ec19
 
18a47c7
 
9d4ec19
 
 
18a47c7
9d4ec19
18a47c7
 
9d4ec19
 
 
 
 
 
 
18a47c7
 
 
9d4ec19
 
18a47c7
9d4ec19
 
 
 
 
 
 
 
 
 
 
18a47c7
 
 
9d4ec19
 
 
 
 
 
 
 
 
18a47c7
9d4ec19
18a47c7
9d4ec19
a5fd229
e09dd64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d4ec19
 
 
 
 
 
 
18a47c7
9d4ec19
 
 
 
 
 
 
 
 
60af967
18a47c7
9d4ec19
 
 
 
 
 
 
 
 
 
 
 
 
a5fd229
18a47c7
9d4ec19
 
 
 
 
 
 
 
 
 
18a47c7
 
9d4ec19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18a47c7
9d4ec19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60af967
18a47c7
9d4ec19
60af967
18a47c7
9d4ec19
60af967
18a47c7
9d4ec19
 
60af967
9d4ec19
 
 
 
 
 
 
 
 
 
 
60af967
18a47c7
 
9d4ec19
 
18a47c7
9d4ec19
 
 
 
 
18a47c7
9d4ec19
18a47c7
9d4ec19
18a47c7
9d4ec19
 
 
 
 
 
 
 
 
18a47c7
9d4ec19
 
 
 
 
 
 
 
 
 
18a47c7
 
9d4ec19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18a47c7
 
9d4ec19
 
 
 
 
 
 
 
 
 
 
 
18a47c7
 
9d4ec19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18a47c7
9d4ec19
 
 
18a47c7
9d4ec19
 
 
18a47c7
9d4ec19
 
 
 
18a47c7
9d4ec19
 
18a47c7
9d4ec19
 
18a47c7
 
 
60af967
9d4ec19
 
 
60af967
9d4ec19
 
18a47c7
9d4ec19
 
 
 
 
 
 
18a47c7
9d4ec19
60af967
18a47c7
 
9d4ec19
 
 
 
 
 
 
 
 
 
18a47c7
9d4ec19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18a47c7
9d4ec19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18a47c7
9d4ec19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60af967
9d4ec19
 
 
 
 
 
60af967
9d4ec19
 
 
 
 
 
 
 
 
 
 
18a47c7
9d4ec19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18a47c7
 
9d4ec19
 
 
 
 
 
18a47c7
9d4ec19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18a47c7
 
9d4ec19
 
 
 
18a47c7
9d4ec19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e09dd64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d4ec19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18a47c7
 
9d4ec19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18a47c7
9d4ec19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18a47c7
 
9d4ec19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18a47c7
9d4ec19
 
 
 
 
 
 
 
 
 
 
 
 
a5fd229
 
9d4ec19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e09dd64
 
9d4ec19
 
 
 
 
 
b27f98e
9d4ec19
60af967
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
import gradio as gr
import numpy as np
import pandas as pd
from scipy import stats
from typing import List, Dict, Any, Optional, Union

def parse_numeric_input(data: str) -> List[float]:
    """
    Parse comma-separated string of numbers into a list of floats.
    
    Args:
        data (str): Comma-separated string of numbers (e.g., "1.2,2.3,3.4,2.1")
        
    Returns:
        List[float]: Parsed numeric data
        
    Raises:
        ValueError: If data cannot be parsed as numeric values
        
    Example:
        >>> parse_numeric_input("85.2,90.1,78.5,92.3")
        [85.2, 90.1, 78.5, 92.3]
    """
    try:
        parsed = [float(x.strip()) for x in data.split(',') if x.strip()]
        if not parsed:
            raise ValueError("No valid numbers found in input string")
        return parsed
    except ValueError as e:
        if "could not convert" in str(e):
            raise ValueError(f"Cannot parse '{data}' as comma-separated numbers")
        raise e

def welch_t_test(
    dataframe: Optional[pd.DataFrame] = None,
    group1_str: Optional[str] = None,
    group2_str: Optional[str] = None,
    alternative: str = "two-sided",
    alpha: float = 0.05,
    effect_thresholds: str = "0.2,0.5,0.8"
) -> Dict[str, Any]:
    """
    Accepts two groups of numeric data as comma-separated strings or DataFrame columns and performs Welch's t-test. This test determines whether two independent groups have significantly different means.
    This test is valid even when populations have different variances. Default to this test instead of students t-test if you are unsure about population variance. 
    This test calculates a t-statistic using Welch's formula that accounts for unequal variances. Given an alternative hypothesis (group1 ≠ group2, group1 < group2, or group1 > group2), 
    it outputs the p-value: the probability of observing this result (or more extreme) if no true difference exists. Results are considered statistically significant 
    when p-value < alpha (typically 0.05). Cohen's d measures practical effect size, calculated using pooled standard deviation for consistency with other t-tests, with interpretation: 
    |d| < 0.2 = negligible, 0.2-0.5 = small, 0.5-0.8 = medium, >0.8 = large (custom thresholds may be used). 
    EXAMPLE USE CASES: treatment vs control groups, before/after measurements with different participants, 
    comparing performance between demographic groups.
    
    Args:
        dataframe (Optional[pd.DataFrame]): DataFrame containing group data in first two columns. 
                                           If provided, group1_str and group2_str will be ignored.
        group1_str (Optional[str]): Comma-separated string of numeric values for the first group.
                                   Example: "12.1,15.3,18.7,14.2,16.8" (reaction times for Group A)
                                   Only used if dataframe is None or empty.
        group2_str (Optional[str]): Comma-separated string of numeric values for the second group.
                                   Example: "22.4,19.8,25.1,21.3" (reaction times for Group B)
                                   Only used if dataframe is None or empty.
        alternative (str): Direction of the alternative hypothesis:
                          - "two-sided": group1 mean ≠ group2 mean (different in either direction)
                          - "less": group1 mean < group2 mean (group1 is smaller)
                          - "greater": group1 mean > group2 mean (group1 is larger)
        alpha (float): Significance level for the test (probability of Type I error).
                      Common values: 0.05 (5%), 0.01 (1%), 0.10 (10%)
        effect_thresholds (str): Three comma-separated values defining Cohen's d effect size boundaries.
                               Format: "small_threshold,medium_threshold,large_threshold"
                               Default "0.2,0.5,0.8" means: <0.2=negligible, 0.2-0.5=small, 0.5-0.8=medium, >0.8=large
    
    Returns:
        dict: Comprehensive test results with the following keys:
            - test_type (str): Always "Welch's t-test (unequal variances)"
            - t_statistic (float): The calculated t-value using Welch's formula
            - p_value (float): Probability of observing this result if null hypothesis is true
            - degrees_of_freedom (float): Welch's adjusted df (usually non-integer), accounts for unequal variances
            - cohens_d (float): Standardized effect size. Positive means group1 > group2, negative means group1 < group2
            - pooled_std (float): Pooled standard deviation used in effect size calculation
            - group1_stats (dict): Descriptive statistics for group1 (mean, std, n)
            - group2_stats (dict): Descriptive statistics for group2 (mean, std, n)
            - significant (bool): True if p_value < alpha
            - effect_size (str): Categorical interpretation of Cohen's d magnitude
            - alternative_hypothesis (str): Echo of alternative parameter
            - alpha (float): Echo of significance level used
            - effect_thresholds (List[float]): Echo of effect size thresholds used
    """
    try:
        # Parse effect size thresholds
        try:
            thresholds = [float(x.strip()) for x in effect_thresholds.split(',')]
            if len(thresholds) != 3:
                return {"error": "Effect thresholds must be three comma-separated numbers (small,medium,large)"}
        except:
            return {"error": "Invalid effect thresholds format. Use 'small,medium,large' (e.g., '0.2,0.5,0.8')"}
        
        # Method 1: DataFrame input (preferred for LLMs and data pipelines)
        if dataframe is not None and not dataframe.empty:
            # Use first two columns automatically
            if len(dataframe.columns) < 2:
                return {"error": f"DataFrame must have at least 2 columns. Found {len(dataframe.columns)} columns."}
            
            # Extract and validate data from first two columns
            try:
                # Convert to numeric, coercing errors to NaN
                col1_numeric = pd.to_numeric(dataframe.iloc[:, 0], errors='coerce')
                col2_numeric = pd.to_numeric(dataframe.iloc[:, 1], errors='coerce')
                
                # Remove NaN values and convert to list
                group1 = col1_numeric.dropna().tolist()
                group2 = col2_numeric.dropna().tolist()
                
                # Check if we lost too much data due to non-numeric values
                original_count1 = len(dataframe.iloc[:, 0].dropna())
                original_count2 = len(dataframe.iloc[:, 1].dropna())
                
                if len(group1) < original_count1 * 0.5:  # Lost more than 50% of data
                    return {"error": f"Column 1 contains too many non-numeric values. Only {len(group1)} out of {original_count1} values could be converted to numbers."}
                
                if len(group2) < original_count2 * 0.5:  # Lost more than 50% of data
                    return {"error": f"Column 2 contains too many non-numeric values. Only {len(group2)} out of {original_count2} values could be converted to numbers."}
                
                input_method = "dataframe"
                
            except Exception as e:
                return {"error": f"Error processing DataFrame columns: {str(e)}. Ensure columns contain numeric data."}
            
        # Method 2: String input (preferred for humans and simple use cases)
        elif group1_str and group2_str and group1_str.strip() and group2_str.strip():
            try:
                group1 = parse_numeric_input(group1_str)
                group2 = parse_numeric_input(group2_str)
                input_method = "strings"
            except ValueError as e:
                return {"error": f"String parsing error: {str(e)}"}
            
        else:
            return {"error": "Please provide either a DataFrame with data OR comma-separated strings for both groups. Do not leave inputs empty."}
        
        # Validate extracted data
        if len(group1) < 2:
            return {"error": f"Group 1 must have at least 2 observations. Found {len(group1)} values."}
        
        if len(group2) < 2:
            return {"error": f"Group 2 must have at least 2 observations. Found {len(group2)} values."}
        
        # Perform Welch's t-test analysis
        # Convert to numpy arrays for calculations
        data1 = np.array(group1)
        data2 = np.array(group2)
        
        # Perform Welch's t-test (unequal variances)
        t_stat, p_value = stats.ttest_ind(data1, data2, equal_var=False, alternative=alternative)
        
        # Calculate descriptive statistics
        desc1 = {"mean": np.mean(data1), "std": np.std(data1, ddof=1), "n": len(data1)}
        desc2 = {"mean": np.mean(data2), "std": np.std(data2, ddof=1), "n": len(data2)}
        
        # Welch's degrees of freedom formula
        s1_sq, s2_sq = desc1["std"]**2, desc2["std"]**2
        n1, n2 = desc1["n"], desc2["n"]
        df = (s1_sq/n1 + s2_sq/n2)**2 / ((s1_sq/n1)**2/(n1-1) + (s2_sq/n2)**2/(n2-1))
        
        # Effect size (Cohen's d using pooled standard deviation for consistency)
        # For Welch's test, we still typically use pooled SD for Cohen's d calculation
        pooled_std = np.sqrt(((len(data1)-1)*desc1["std"]**2 + (len(data2)-1)*desc2["std"]**2) / (len(data1) + len(data2) - 2))
        cohens_d = (desc1["mean"] - desc2["mean"]) / pooled_std
        
        # Interpretation using Cohen's canonical benchmarks
        significant = p_value < alpha
        abs_d = abs(cohens_d)
        small_threshold, medium_threshold, large_threshold = thresholds
        if abs_d < small_threshold:
            effect_size_interp = "negligible"
        elif abs_d < medium_threshold:
            effect_size_interp = "small"
        elif abs_d < large_threshold:
            effect_size_interp = "medium"
        else:
            effect_size_interp = "large"
        
        return {
            "test_type": "Welch's t-test",
            "t_statistic": t_stat,
            "p_value": p_value,
            "degrees_of_freedom": df,
            "cohens_d": cohens_d,
            "pooled_std": pooled_std,
            "group1_stats": desc1,
            "group2_stats": desc2,
            "significant": significant,
            "effect_size": effect_size_interp,
            "alternative_hypothesis": alternative,
            "alpha": alpha,
            "effect_thresholds": thresholds
        }
        
    except Exception as e:
        return {"error": f"Unexpected error in Welch's t-test: {str(e)}"}

def student_t_test(
    dataframe: Optional[pd.DataFrame] = None,
    group1_str: Optional[str] = None,
    group2_str: Optional[str] = None,
    alternative: str = "two-sided",
    alpha: float = 0.05,
    effect_thresholds: str = "0.2,0.5,0.8"
) -> Dict[str, Any]:
    """
    Accepts two groups of numeric data as comma-separated strings or DataFrame columns and performs Student's t-test. 
    This test determines whether two independent groups have significantly different means, assuming populations from which the groups were sampled have equal 
    variances (if this assumption is violated, or if equal population variance cannot be verified, use Welch's t-test instead). The test calculates a t-statistic quantifying the mean 
    difference as a multiple of pooled standard deviation. Given an alternative hypothesis (group1 ≠ group2, group1 < group2, or group1 > group2), 
    it outputs the p-value: the probability of observing this result (or more extreme) if no true difference exists. Results are statistically significant 
    when p-value < alpha (typically 0.05). Cohen's d measures practical effect size, standardized by pooled standard deviation, with interpretation: 
    |d| < 0.2 = negligible, 0.2-0.5 = small, 0.5-0.8 = medium, >0.8 = large (custom thresholds may be used). 
    EXAMPLE USE CASES: treatment vs control groups, before/after measurements with different participants, 
    comparing performance between demographic groups.
    
    Args:
        dataframe (Optional[pd.DataFrame]): DataFrame containing group data in first two columns. 
                                           If provided, group1_str and group2_str will be ignored.
        group1_str (Optional[str]): Comma-separated string of numeric values for the first group.
                                   Example: "85.2,90.1,78.5,92.3" (test scores for Group A)
                                   Only used if dataframe is None or empty.
        group2_str (Optional[str]): Comma-separated string of numeric values for the second group.
                                   Example: "88.1,85.7,91.2,87.4" (test scores for Group B)
                                   Only used if dataframe is None or empty.
        alternative (str): Direction of the alternative hypothesis:
                          - "two-sided": group1 mean ≠ group2 mean (different in either direction)
                          - "less": group1 mean < group2 mean (group1 is smaller)
                          - "greater": group1 mean > group2 mean (group1 is larger)
        alpha (float): Significance level for the test (probability of Type I error). Reject null hypothesis if p_value below this threshold.
                      Common values: 0.05 (5%), 0.01 (1%), 0.10 (10%)
        effect_thresholds (str): Three comma-separated values defining Cohen's d effect size boundaries.
                               Format: "small_threshold,medium_threshold,large_threshold"
                               Default "0.2,0.5,0.8" means: <0.2=negligible, 0.2-0.5=small, 0.5-0.8=medium, >0.8=large
                               These are Cohen's canonical benchmarks for effect size interpretation.
    
    Returns:
        dict: Comprehensive test results with the following keys:
            - test_type (str): Always "Student's t-test"
            - t_statistic (float): The calculated t-value, which measures how many standard errors the difference 
                    between group means is away from zero (assuming the null hypothesis is true). 
                    Larger absolute values indicate the observed difference is less likely under the null hypothesis.
            - p_value (float): Probability of observing this result (or more extreme) if null hypothesis is true.
                              Values < alpha indicate statistical significance.
            - degrees_of_freedom (int): df = n1 + n2 - 2, degrees of freedom for the pooled variance estimate, used for determining critical t-values.
            - cohens_d (float): Effect size measure. Positive means group1 > group2, negative means group1 < group2.
                               Interpreted using Cohen's canonical benchmarks: negligible (<0.2), small (0.2), medium (0.5), large (0.8).
            - pooled_std (float): Combined standard deviation used in Cohen's d calculation.
            - group1_stats (dict): Descriptive statistics for group1 (mean, std, n)
            - group2_stats (dict): Descriptive statistics for group2 (mean, std, n)
            - significant (bool): True if p_value < alpha, False otherwise
            - effect_size (str): Categorical interpretation ("negligible", "small", "medium", "large") based on |cohens_d| and effect_thresholds
            - alternative_hypothesis (str): Echo of the alternative parameter used
            - alpha (float): Echo of the significance level used
            - effect_thresholds (List[float]): Echo of the thresholds used
    """
    try:
        # Parse effect size thresholds
        try:
            thresholds = [float(x.strip()) for x in effect_thresholds.split(',')]
            if len(thresholds) != 3:
                return {"error": "Effect thresholds must be three comma-separated numbers (small,medium,large)"}
        except:
            return {"error": "Invalid effect thresholds format. Use 'small,medium,large' (e.g., '0.2,0.5,0.8')"}
        
        # Method 1: DataFrame input (preferred for LLMs and data pipelines)
        if dataframe is not None and not dataframe.empty:
            # Use first two columns automatically
            if len(dataframe.columns) < 2:
                return {"error": f"DataFrame must have at least 2 columns. Found {len(dataframe.columns)} columns."}
            
            # Extract and validate data from first two columns
            try:
                # Convert to numeric, coercing errors to NaN
                col1_numeric = pd.to_numeric(dataframe.iloc[:, 0], errors='coerce')
                col2_numeric = pd.to_numeric(dataframe.iloc[:, 1], errors='coerce')
                
                # Remove NaN values and convert to list
                group1 = col1_numeric.dropna().tolist()
                group2 = col2_numeric.dropna().tolist()
                
                # Check if we lost too much data due to non-numeric values
                original_count1 = len(dataframe.iloc[:, 0].dropna())
                original_count2 = len(dataframe.iloc[:, 1].dropna())
                
                if len(group1) < original_count1 * 0.5:  # Lost more than 50% of data
                    return {"error": f"Column 1 contains too many non-numeric values. Only {len(group1)} out of {original_count1} values could be converted to numbers."}
                
                if len(group2) < original_count2 * 0.5:  # Lost more than 50% of data
                    return {"error": f"Column 2 contains too many non-numeric values. Only {len(group2)} out of {original_count2} values could be converted to numbers."}
                
                input_method = "dataframe"
                
            except Exception as e:
                return {"error": f"Error processing DataFrame columns: {str(e)}. Ensure columns contain numeric data."}
            
        # Method 2: String input (preferred for humans and simple use cases)
        elif group1_str and group2_str and group1_str.strip() and group2_str.strip():
            try:
                group1 = parse_numeric_input(group1_str)
                group2 = parse_numeric_input(group2_str)
                input_method = "strings"
            except ValueError as e:
                return {"error": f"String parsing error: {str(e)}"}
            
        else:
            return {"error": "Please provide either a DataFrame with data OR comma-separated strings for both groups. Do not leave inputs empty."}
        
        # Validate extracted data
        if len(group1) < 2:
            return {"error": f"Group 1 must have at least 2 observations. Found {len(group1)} values."}
        
        if len(group2) < 2:
            return {"error": f"Group 2 must have at least 2 observations. Found {len(group2)} values."}
        
        # Perform Student's t-test analysis directly
        # Convert to numpy arrays for calculations
        data1 = np.array(group1)
        data2 = np.array(group2)
        
        # Perform Student's t-test (equal variances)
        t_stat, p_value = stats.ttest_ind(data1, data2, equal_var=True, alternative=alternative)
        
        # Calculate descriptive statistics
        desc1 = {"mean": np.mean(data1), "std": np.std(data1, ddof=1), "n": len(data1)}
        desc2 = {"mean": np.mean(data2), "std": np.std(data2, ddof=1), "n": len(data2)}
        
        # Degrees of freedom (pooled)
        df = len(data1) + len(data2) - 2
        
        # Effect size (Cohen's d using pooled standard deviation)
        pooled_std = np.sqrt(((len(data1)-1)*desc1["std"]**2 + (len(data2)-1)*desc2["std"]**2) / df)
        cohens_d = (desc1["mean"] - desc2["mean"]) / pooled_std
        
        # Interpretation using Cohen's canonical benchmarks
        significant = p_value < alpha
        abs_d = abs(cohens_d)
        small_threshold, medium_threshold, large_threshold = thresholds
        if abs_d < small_threshold:
            effect_size_interp = "negligible"
        elif abs_d < medium_threshold:
            effect_size_interp = "small"
        elif abs_d < large_threshold:
            effect_size_interp = "medium"
        else:
            effect_size_interp = "large"
        
        return {
            "test_type": "Student's t-test",
            "t_statistic": t_stat,
            "p_value": p_value,
            "degrees_of_freedom": df,
            "cohens_d": cohens_d,
            "pooled_std": pooled_std,
            "group1_stats": desc1,
            "group2_stats": desc2,
            "significant": significant,
            "effect_size": effect_size_interp,
            "alternative_hypothesis": alternative,
            "alpha": alpha,
            "effect_thresholds": thresholds
        }
        
    except Exception as e:
        return {"error": f"Unexpected error in flexible t-test: {str(e)}"}

def paired_t_test(
   dataframe: Optional[pd.DataFrame] = None,
   group1_str: Optional[str] = None,
   group2_str: Optional[str] = None,
   alternative: str = "two-sided",
   alpha: float = 0.05,
   effect_thresholds: str = "0.2,0.5,0.8"
) -> Dict[str, Any]:
   """
   Accepts two groups of paired numeric data as comma-separated strings or DataFrame columns and performs a paired samples t-test. 
   This test determines whether there is a significant difference between two related measurements (same subjects measured twice), 
   such as before/after treatment measurements. Unlike independent samples t-tests, this test accounts for the correlation between 
   paired observations, making it more powerful for detecting differences in repeated measures designs. The test calculates a t-statistic 
   based on the mean of the differences between paired observations. Given an alternative hypothesis (group1 ≠ group2, group1 < group2, 
   or group1 > group2), it outputs the p-value: the probability of observing this result (or more extreme) if no true difference exists. 
   Results are statistically significant when p-value < alpha (typically 0.05). Cohen's d measures practical effect size, calculated 
   as the mean difference divided by the standard deviation of differences, with interpretation: |d| < 0.2 = negligible, 0.2-0.5 = small, 
   0.5-0.8 = medium, >0.8 = large (custom thresholds may be used).
   EXAMPLE USE CASES: before/after treatment measurements on same subjects, pre/post test scores, repeated measurements over time.
   
   Args:
       dataframe (Optional[pd.DataFrame]): DataFrame containing paired data in first two columns. 
                                          If provided, group1_str and group2_str will be ignored.
       group1_str (Optional[str]): Comma-separated string of numeric values for the first measurement.
                                  Example: "85.2,90.1,78.5,92.3" (pre-test scores)
                                  Only used if dataframe is None or empty.
       group2_str (Optional[str]): Comma-separated string of numeric values for the second measurement.
                                  Example: "88.1,95.7,82.2,94.4" (post-test scores)
                                  Only used if dataframe is None or empty.
       alternative (str): Direction of the alternative hypothesis:
                         - "two-sided": group1 mean ≠ group2 mean (different in either direction)
                         - "less": group1 mean < group2 mean (group1 is smaller)
                         - "greater": group1 mean > group2 mean (group1 is larger)
       alpha (float): Significance level for the test (probability of Type I error). Reject null hypothesis if p_value below this threshold.
                     Common values: 0.05 (5%), 0.01 (1%), 0.10 (10%)
       effect_thresholds (str): Three comma-separated values defining Cohen's d effect size boundaries.
                              Format: "small_threshold,medium_threshold,large_threshold"
                              Default "0.2,0.5,0.8" means: <0.2=negligible, 0.2-0.5=small, 0.5-0.8=medium, >0.8=large
   
   Returns:
       dict: Comprehensive test results with the following keys:
           - test_type (str): Always "Paired samples t-test"
           - t_statistic (float): The calculated t-value based on mean difference and standard error of differences
           - p_value (float): Probability of observing this result if null hypothesis is true
           - degrees_of_freedom (int): df = n - 1, where n is the number of paired observations
           - cohens_d (float): Effect size measure. Positive means group2 > group1, negative means group1 > group2
           - pooled_std (float): Standard deviation of the differences (used in Cohen's d calculation)
           - group1_stats (dict): Descriptive statistics for group1 (mean, std, n)
           - group2_stats (dict): Descriptive statistics for group2 (mean, std, n)
           - significant (bool): True if p_value < alpha
           - effect_size (str): Categorical interpretation of Cohen's d magnitude
           - alternative_hypothesis (str): Echo of alternative parameter
           - alpha (float): Echo of significance level used
           - effect_thresholds (List[float]): Echo of effect size thresholds used
   """
   try:
       # Parse effect size thresholds
       try:
           thresholds = [float(x.strip()) for x in effect_thresholds.split(',')]
           if len(thresholds) != 3:
               return {"error": "Effect thresholds must be three comma-separated numbers (small,medium,large)"}
       except:
           return {"error": "Invalid effect thresholds format. Use 'small,medium,large' (e.g., '0.2,0.5,0.8')"}
       
       # Method 1: DataFrame input (preferred for LLMs and data pipelines)
       if dataframe is not None and not dataframe.empty:
           # Use first two columns automatically
           if len(dataframe.columns) < 2:
               return {"error": f"DataFrame must have at least 2 columns. Found {len(dataframe.columns)} columns."}
           
           # Extract and validate data from first two columns
           try:
               # Convert to numeric, coercing errors to NaN
               col1_numeric = pd.to_numeric(dataframe.iloc[:, 0], errors='coerce')
               col2_numeric = pd.to_numeric(dataframe.iloc[:, 1], errors='coerce')
               
               # Remove NaN values and convert to list
               group1 = col1_numeric.dropna().tolist()
               group2 = col2_numeric.dropna().tolist()
               
               # Check if we lost too much data due to non-numeric values
               original_count1 = len(dataframe.iloc[:, 0].dropna())
               original_count2 = len(dataframe.iloc[:, 1].dropna())
               
               if len(group1) < original_count1 * 0.5:  # Lost more than 50% of data
                   return {"error": f"Column 1 contains too many non-numeric values. Only {len(group1)} out of {original_count1} values could be converted to numbers."}
               
               if len(group2) < original_count2 * 0.5:  # Lost more than 50% of data
                   return {"error": f"Column 2 contains too many non-numeric values. Only {len(group2)} out of {original_count2} values could be converted to numbers."}
               
               input_method = "dataframe"
               
           except Exception as e:
               return {"error": f"Error processing DataFrame columns: {str(e)}. Ensure columns contain numeric data."}
           
       # Method 2: String input (preferred for humans and simple use cases)
       elif group1_str and group2_str and group1_str.strip() and group2_str.strip():
           try:
               group1 = parse_numeric_input(group1_str)
               group2 = parse_numeric_input(group2_str)
               input_method = "strings"
           except ValueError as e:
               return {"error": f"String parsing error: {str(e)}"}
           
       else:
           return {"error": "Please provide either a DataFrame with data OR comma-separated strings for both groups. Do not leave inputs empty."}
       
       # Validate extracted data - paired samples must have equal length
       if len(group1) != len(group2):
           return {"error": f"Paired samples must have equal length. Group1 has {len(group1)} observations, Group2 has {len(group2)} observations."}
       
       if len(group1) < 2:
           return {"error": f"Need at least 2 paired observations. Found {len(group1)} pairs."}
       
       # Perform paired samples t-test
       # Convert to numpy arrays for calculations
       data1 = np.array(group1)
       data2 = np.array(group2)
       
       # Perform paired t-test
       t_stat, p_value = stats.ttest_rel(data1, data2, alternative=alternative)
       
       # Calculate descriptive statistics
       desc1 = {"mean": np.mean(data1), "std": np.std(data1, ddof=1), "n": len(data1)}
       desc2 = {"mean": np.mean(data2), "std": np.std(data2, ddof=1), "n": len(data2)}
       
       # Calculate differences and effect size
       differences = data2 - data1
       mean_diff = np.mean(differences)
       std_diff = np.std(differences, ddof=1)
       
       # Degrees of freedom for paired t-test
       df = len(data1) - 1
       
       # Effect size (Cohen's d for paired samples: mean difference / std of differences)
       cohens_d = mean_diff / std_diff
       
       # Interpretation using Cohen's canonical benchmarks
       significant = p_value < alpha
       abs_d = abs(cohens_d)
       small_threshold, medium_threshold, large_threshold = thresholds
       if abs_d < small_threshold:
           effect_size_interp = "negligible"
       elif abs_d < medium_threshold:
           effect_size_interp = "small"
       elif abs_d < large_threshold:
           effect_size_interp = "medium"
       else:
           effect_size_interp = "large"
       
       return {
           "test_type": "Paired samples t-test",
           "t_statistic": t_stat,
           "p_value": p_value,
           "degrees_of_freedom": df,
           "cohens_d": cohens_d,
           "pooled_std": std_diff,  # For paired t-test, this is std of differences
           "group1_stats": desc1,
           "group2_stats": desc2,
           "significant": significant,
           "effect_size": effect_size_interp,
           "alternative_hypothesis": alternative,
           "alpha": alpha,
           "effect_thresholds": thresholds
       }
       
   except Exception as e:
       return {"error": f"Unexpected error in paired t-test: {str(e)}"}

def one_sample_t_test(
   dataframe: Optional[pd.DataFrame] = None,
   group_str: Optional[str] = None,
   population_mean: float = 0.0,
   alternative: str = "two-sided",
   alpha: float = 0.05,
   effect_thresholds: str = "0.2,0.5,0.8"
) -> Dict[str, Any]:
   """
   Accepts a single group of numeric data as comma-separated string or DataFrame column and performs a one-sample t-test 
   against a known or hypothesized population mean. This test determines whether the sample mean differs significantly 
   from the specified population mean. The test calculates a t-statistic quantifying how many standard errors the sample 
   mean is away from the hypothesized population mean. Given an alternative hypothesis (sample ≠ population, sample < population, 
   or sample > population), it outputs the p-value: the probability of observing this result (or more extreme) if the true 
   population mean equals the hypothesized value. Results are statistically significant when p-value < alpha (typically 0.05). 
   Cohen's d measures practical effect size, calculated as the difference between sample and population means divided by the 
   sample standard deviation, with interpretation: |d| < 0.2 = negligible, 0.2-0.5 = small, 0.5-0.8 = medium, >0.8 = large 
   (custom thresholds may be used).
   EXAMPLE USE CASES: testing if sample mean differs from known standard, quality control against specification, 
   comparing sample performance against established benchmark.
   
   Args:
       dataframe (Optional[pd.DataFrame]): DataFrame containing sample data in first column. 
                                          If provided, group_str will be ignored.
       group_str (Optional[str]): Comma-separated string of numeric values for the sample.
                                  Example: "85.2,90.1,78.5,92.3" (test scores)
                                  Only used if dataframe is None or empty.
       population_mean (float): Hypothesized or known population mean to test against.
       alternative (str): Direction of the alternative hypothesis:
                         - "two-sided": sample mean ≠ population mean (different in either direction)
                         - "less": sample mean < population mean (sample is smaller)
                         - "greater": sample mean > population mean (sample is larger)
       alpha (float): Significance level for the test (probability of Type I error). Reject null hypothesis if p_value below this threshold.
                     Common values: 0.05 (5%), 0.01 (1%), 0.10 (10%)
       effect_thresholds (str): Three comma-separated values defining Cohen's d effect size boundaries.
                              Format: "small_threshold,medium_threshold,large_threshold"
                              Default "0.2,0.5,0.8" means: <0.2=negligible, 0.2-0.5=small, 0.5-0.8=medium, >0.8=large
   
   Returns:
       dict: Comprehensive test results with the following keys:
           - test_type (str): Always "One-sample t-test"
           - t_statistic (float): The calculated t-value measuring sample mean deviation from population mean
           - p_value (float): Probability of observing this result if null hypothesis is true
           - degrees_of_freedom (int): df = n - 1, where n is the sample size
           - cohens_d (float): Effect size measure. Positive means sample > population, negative means sample < population
           - pooled_std (float): Sample standard deviation (used in Cohen's d calculation)
           - group_stats (dict): Descriptive statistics for the sample (mean, std, n)
           - significant (bool): True if p_value < alpha
           - effect_size (str): Categorical interpretation of Cohen's d magnitude
           - alternative_hypothesis (str): Echo of alternative parameter
           - alpha (float): Echo of significance level used
           - effect_thresholds (List[float]): Echo of effect size thresholds used
   """
   try:
       # Parse effect size thresholds
       try:
           thresholds = [float(x.strip()) for x in effect_thresholds.split(',')]
           if len(thresholds) != 3:
               return {"error": "Effect thresholds must be three comma-separated numbers (small,medium,large)"}
       except:
           return {"error": "Invalid effect thresholds format. Use 'small,medium,large' (e.g., '0.2,0.5,0.8')"}
       
       # Method 1: DataFrame input (preferred for LLMs and data pipelines)
       if dataframe is not None and not dataframe.empty:
           # Use first column only
           if len(dataframe.columns) < 1:
               return {"error": f"DataFrame must have at least 1 column. Found {len(dataframe.columns)} columns."}
           
           # Extract and validate data from first column
           try:
               # Convert to numeric, coercing errors to NaN
               col1_numeric = pd.to_numeric(dataframe.iloc[:, 0], errors='coerce')
               
               # Remove NaN values and convert to list
               group = col1_numeric.dropna().tolist()
               
               # Check if we lost too much data due to non-numeric values
               original_count = len(dataframe.iloc[:, 0].dropna())
               
               if len(group) < original_count * 0.5:  # Lost more than 50% of data
                   return {"error": f"Column 1 contains too many non-numeric values. Only {len(group)} out of {original_count} values could be converted to numbers."}
               
           except Exception as e:
               return {"error": f"Error processing DataFrame column: {str(e)}. Ensure column contains numeric data."}
           
       # Method 2: String input (preferred for humans and simple use cases)
       elif group_str and group_str.strip():
           try:
               group = parse_numeric_input(group_str)
           except ValueError as e:
               return {"error": f"String parsing error: {str(e)}"}
           
       else:
           return {"error": "Please provide either a DataFrame with data OR a comma-separated string for the sample. Do not leave input empty."}
       
       # Validate extracted data
       if len(group) < 2:
           return {"error": f"Sample must have at least 2 observations. Found {len(group)} values."}
       
       # Perform one-sample t-test
       # Convert to numpy array for calculations
       data = np.array(group)
       
       # Perform one-sample t-test
       t_stat, p_value = stats.ttest_1samp(data, population_mean, alternative=alternative)
       
       # Calculate descriptive statistics
       group_stats = {"mean": np.mean(data), "std": np.std(data, ddof=1), "n": len(data)}
       
       # Degrees of freedom
       df = len(data) - 1
       
       # Effect size (Cohen's d for one-sample: (sample_mean - population_mean) / sample_std)
       sample_std = group_stats["std"]
       cohens_d = (group_stats["mean"] - population_mean) / sample_std
       
       # Interpretation using Cohen's canonical benchmarks
       significant = p_value < alpha
       abs_d = abs(cohens_d)
       small_threshold, medium_threshold, large_threshold = thresholds
       if abs_d < small_threshold:
           effect_size_interp = "negligible"
       elif abs_d < medium_threshold:
           effect_size_interp = "small"
       elif abs_d < large_threshold:
           effect_size_interp = "medium"
       else:
           effect_size_interp = "large"
       
       return {
           "test_type": "One-sample t-test",
           "t_statistic": t_stat,
           "p_value": p_value,
           "degrees_of_freedom": df,
           "cohens_d": cohens_d,
           "pooled_std": sample_std,
           "group_stats": group_stats,
           "significant": significant,
           "effect_size": effect_size_interp,
           "alternative_hypothesis": alternative,
           "alpha": alpha,
           "effect_thresholds": thresholds
       }
       
   except Exception as e:
       return {"error": f"Unexpected error in one-sample t-test: {str(e)}"}


def one_way_anova(
    dataframe: Optional[pd.DataFrame] = None,
    groups_str: Optional[str] = None,
    alpha: float = 0.05,
    effect_thresholds: str = "0.01,0.06,0.14"
) -> Dict[str, Any]:
    """
    Accepts multiple groups of numeric data as semicolon-separated groups or DataFrame columns and performs a one-way ANOVA 
    (Analysis of Variance). This test determines whether there are statistically significant differences between the means 
    of three or more independent groups. ANOVA tests the null hypothesis that all group means are equal against the alternative 
    that at least one group mean differs from the others. The test calculates an F-statistic by comparing the variance between 
    groups to the variance within groups. A significant result (p-value < alpha) indicates that at least one group differs, 
    but does not identify which specific groups differ (post-hoc tests needed for pairwise comparisons). Eta-squared (η²) 
    measures effect size as the proportion of total variance explained by group membership, with interpretation: η² < 0.01 = negligible, 
    0.01-0.06 = small, 0.06-0.14 = medium, >0.14 = large (custom thresholds may be used).
    EXAMPLE USE CASES: comparing means across multiple treatment conditions, testing differences between multiple demographic groups, 
    evaluating performance across several experimental conditions.
    
    Args:
        dataframe (Optional[pd.DataFrame]): DataFrame containing group data in columns. All columns will be treated as separate groups.
                                           If provided, groups_str will be ignored.
        groups_str (Optional[str]): Multiple groups separated by semicolons, with each group containing comma-separated values.
                                   Example: "85.2,90.1,78.5;88.1,85.7,91.2;82.3,87.4,89.1" (3 groups with their respective values)
                                   Only used if dataframe is None or empty.
        alpha (float): Significance level for the test (probability of Type I error). Reject null hypothesis if p_value below this threshold.
                      Common values: 0.05 (5%), 0.01 (1%), 0.10 (10%)
        effect_thresholds (str): Three comma-separated values defining eta-squared effect size boundaries.
                               Format: "small_threshold,medium_threshold,large_threshold"
                               Default "0.01,0.06,0.14" means: <0.01=negligible, 0.01-0.06=small, 0.06-0.14=medium, >0.14=large
    
    Returns:
        dict: Comprehensive test results with the following keys:
            - test_type (str): Always "One-way ANOVA"
            - f_statistic (float): The calculated F-value comparing between-group to within-group variance
            - p_value (float): Probability of observing this result if null hypothesis is true
            - degrees_of_freedom (dict): Contains df_between (groups-1) and df_within (total_n - groups)
            - eta_squared (float): Effect size measure (proportion of variance explained by groups)
            - group_stats (List[dict]): Descriptive statistics for each group (mean, std, n)
            - significant (bool): True if p_value < alpha
            - effect_size (str): Categorical interpretation of eta-squared magnitude
            - alpha (float): Echo of significance level used
            - effect_thresholds (List[float]): Echo of effect size thresholds used
    """
    try:
        # Parse effect size thresholds
        try:
            thresholds = [float(x.strip()) for x in effect_thresholds.split(',')]
            if len(thresholds) != 3:
                return {"error": "Effect thresholds must be three comma-separated numbers (small,medium,large)"}
        except:
            return {"error": "Invalid effect thresholds format. Use 'small,medium,large' (e.g., '0.01,0.06,0.14')"}
        
        groups = []
        
        # Method 1: DataFrame input (preferred for LLMs and data pipelines)
        if dataframe is not None and not dataframe.empty:
            # Use all columns as separate groups
            if len(dataframe.columns) < 2:
                return {"error": f"DataFrame must have at least 2 columns for ANOVA. Found {len(dataframe.columns)} columns."}
            
            # Extract and validate data from all columns
            try:
                for col_idx, col in enumerate(dataframe.columns):
                    col_numeric = pd.to_numeric(dataframe.iloc[:, col_idx], errors='coerce')
                    group_data = col_numeric.dropna().tolist()
                    
                    # Check if we have enough data
                    original_count = len(dataframe.iloc[:, col_idx].dropna())
                    if len(group_data) < original_count * 0.5:  # Lost more than 50% of data
                        return {"error": f"Column {col_idx+1} contains too many non-numeric values. Only {len(group_data)} out of {original_count} values could be converted to numbers."}
                    
                    if len(group_data) < 2:
                        return {"error": f"Column {col_idx+1} must have at least 2 observations. Found {len(group_data)} values."}
                    
                    groups.append(group_data)
                    
            except Exception as e:
                return {"error": f"Error processing DataFrame columns: {str(e)}. Ensure columns contain numeric data."}
            
        # Method 2: String input (preferred for humans and simple use cases)
        elif groups_str and groups_str.strip():
            try:
                # Split by semicolon to separate groups
                group_strings = [group.strip() for group in groups_str.split(';') if group.strip()]
                
                if len(group_strings) < 2:
                    return {"error": "ANOVA requires at least 2 groups. Please provide groups separated by semicolons (;)."}
                
                for i, group_str in enumerate(group_strings):
                    try:
                        group_data = parse_numeric_input(group_str)
                        if len(group_data) < 2:
                            return {"error": f"Group {i+1} must have at least 2 observations. Found {len(group_data)} values."}
                        groups.append(group_data)
                    except ValueError as e:
                        return {"error": f"String parsing error for group {i+1}: {str(e)}"}
                        
            except Exception as e:
                return {"error": f"Error parsing groups string: {str(e)}. Use format 'group1_values;group2_values;group3_values' where each group contains comma-separated numbers."}
        
        else:
            return {"error": "Please provide either a DataFrame with data OR a semicolon-separated string of groups. Do not leave input empty."}
        
        # Validate we have enough groups
        if len(groups) < 2:
            return {"error": "ANOVA requires at least 2 groups. Please provide data for at least 2 groups."}
        
        # Perform one-way ANOVA
        # Convert to numpy arrays for calculations
        numpy_groups = [np.array(group) for group in groups]
        
        # Perform ANOVA
        f_stat, p_value = stats.f_oneway(*numpy_groups)
        
        # Calculate descriptive statistics for each group
        group_stats = []
        all_data = []
        for i, group in enumerate(numpy_groups):
            group_stats.append({
                "group": i+1,
                "mean": np.mean(group),
                "std": np.std(group, ddof=1),
                "n": len(group)
            })
            all_data.extend(group)
        
        # Calculate effect size (eta-squared)
        all_data = np.array(all_data)
        overall_mean = np.mean(all_data)
        
        # Sum of squares
        ss_total = np.sum((all_data - overall_mean)**2)
        ss_between = sum(len(group) * (np.mean(group) - overall_mean)**2 for group in numpy_groups)
        
        eta_squared = ss_between / ss_total if ss_total > 0 else 0
        
        # Degrees of freedom
        df_between = len(groups) - 1
        df_within = len(all_data) - len(groups)
        
        # Interpretation using effect size thresholds
        significant = p_value < alpha
        small_threshold, medium_threshold, large_threshold = thresholds
        if eta_squared < small_threshold:
            effect_size_interp = "negligible"
        elif eta_squared < medium_threshold:
            effect_size_interp = "small"
        elif eta_squared < large_threshold:
            effect_size_interp = "medium"
        else:
            effect_size_interp = "large"
        
        return {
            "test_type": "One-way ANOVA",
            "f_statistic": f_stat,
            "p_value": p_value,
            "degrees_of_freedom": {"df_between": df_between, "df_within": df_within},
            "eta_squared": eta_squared,
            "group_stats": group_stats,
            "significant": significant,
            "effect_size": effect_size_interp,
            "alpha": alpha,
            "effect_thresholds": thresholds
        }
        
    except Exception as e:
        return {"error": f"Unexpected error in one-way ANOVA: {str(e)}"}

def multi_way_anova(
    dataframe: Optional[pd.DataFrame] = None,
    dependent_var: Optional[str] = None,
    factors: Optional[str] = None,
    alpha: float = 0.05,
    effect_thresholds: str = "0.01,0.06,0.14",
    include_interactions: bool = True,
    max_interaction_order: Optional[int] = None,
    sum_squares_type: int = 2
) -> Dict[str, Any]:
    """
    Accepts multiple categorical factors and performs Multi-Way ANOVA to determine whether there are 
    statistically significant differences between group means when multiple factors are involved simultaneously.
    Multi-way ANOVA extends the one-way ANOVA framework to handle complex experimental designs with multiple 
    categorical independent variables (factors), each with two or more levels. Unlike one-way ANOVA which tests 
    a single factor, multi-way ANOVA can simultaneously test: (1) main effects of each individual factor, 
    (2) interaction effects between factors, and (3) higher-order interactions. The test uses F-statistics to 
    compare variance between groups to variance within groups for each effect. Eta-squared (η²) measures effect 
    size as the proportion of total variance explained by each factor and interaction, with interpretation: 
    η² < 0.01 = negligible, 0.01-0.06 = small, 0.06-0.14 = medium, >0.14 = large (custom thresholds may be used).
    EXAMPLE USE CASES: 2-way ANOVA for treatment × gender effects on blood pressure, 3-way ANOVA for teaching 
    method × school type × student age on test scores, 4-way ANOVA for drug × dose × gender × age effects on recovery.
    
    Args:
        dataframe (Optional[pd.DataFrame]): DataFrame containing the experimental data with factors as columns
                                           and the dependent variable. All factors must be categorical.
                                           If provided, dependent_var and factors parameters are required.
        dependent_var (Optional[str]): Name of the dependent (outcome) variable column in the DataFrame.
                                      Must be a continuous numeric variable.
                                      Example: "test_score", "recovery_time", "blood_pressure"
        factors (Optional[str]): Comma-separated string of factor column names from the DataFrame.
                                Format: "factor1,factor2,factor3"
                                Example: "treatment,gender,age_group" for a 3-way ANOVA
                                Each factor must be categorical with 2 or more levels.
        alpha (float): Significance level for the test (probability of Type I error). Reject null hypothesis if p_value below this threshold.
                      Common values: 0.05 (5%), 0.01 (1%), 0.10 (10%)
        effect_thresholds (str): Three comma-separated values defining eta-squared effect size boundaries.
                               Format: "small_threshold,medium_threshold,large_threshold"
                               Default "0.01,0.06,0.14" means: <0.01=negligible, 0.01-0.06=small, 0.06-0.14=medium, >0.14=large
                               These follow Cohen's conventions for eta-squared interpretation.
        include_interactions (bool): Whether to include interaction terms in the model. 
                                   True (default): Tests main effects AND interactions
                                   False: Tests only main effects (additive model)
        max_interaction_order (Optional[int]): Maximum order of interactions to include in the model.
                                             If None, includes all possible interactions up to the number of factors.
                                             Example: For 4 factors, setting to 2 includes only 2-way interactions.
                                             Useful for simplifying complex models with many factors.
        sum_squares_type (int): Type of sum of squares calculation for the ANOVA table.
                              Type 1: Sequential (depends on order of factors)
                              Type 2: Marginal (recommended for balanced designs, default)
                              Type 3: Partial (recommended for unbalanced designs)
    
    Returns:
        dict: Comprehensive test results with the following keys:
            - test_type (str): Description of the multi-way ANOVA performed (e.g., "3-way ANOVA with interactions")
            - anova_table (pd.DataFrame): Complete ANOVA table with sum of squares, F-statistics, p-values, etc.
            - significant_effects (List[str]): List of statistically significant main effects and interactions
            - effect_sizes (Dict[str, float]): Eta-squared values for each effect measuring proportion of variance explained
            - effect_interpretations (Dict[str, str]): Categorical interpretation of each effect size ("negligible", "small", "medium", "large")
            - factor_summaries (Dict[str, dict]): Descriptive statistics for each factor level
            - model_summary (dict): Overall model statistics (R², F-statistic, AIC, BIC, etc.)
            - formula_used (str): The statsmodels formula string used for the analysis
            - design_summary (dict): Information about the experimental design (balanced/unbalanced, sample sizes)
            - alpha (float): Echo of significance level used
            - factors_analyzed (List[str]): Echo of factors included in the analysis
            - sum_squares_type (int): Echo of sum of squares type used
            - effect_thresholds (List[float]): Echo of effect size thresholds used
    """
    try:
        # Parse effect size thresholds
        try:
            thresholds = [float(x.strip()) for x in effect_thresholds.split(',')]
            if len(thresholds) != 3:
                return {"error": "Effect thresholds must be three comma-separated numbers (small,medium,large)"}
        except:
            return {"error": "Invalid effect thresholds format. Use 'small,medium,large' (e.g., '0.01,0.06,0.14')"}
        
        # Validate inputs
        if dataframe is None or dataframe.empty:
            return {"error": "DataFrame cannot be None or empty"}
        
        if not dependent_var:
            return {"error": "Dependent variable name is required"}
        
        if dependent_var not in dataframe.columns:
            return {"error": f"Dependent variable '{dependent_var}' not found in DataFrame columns"}
        
        if not factors:
            return {"error": "Factor names are required. Provide as comma-separated string (e.g., 'factor1,factor2,factor3')"}
        
        # Parse factors
        try:
            factor_list = [f.strip() for f in factors.split(',') if f.strip()]
            if len(factor_list) < 2:
                return {"error": "At least 2 factors are required for multi-way ANOVA"}
        except:
            return {"error": "Invalid factors format. Use comma-separated factor names (e.g., 'treatment,gender,age_group')"}
        
        # Check factors exist in DataFrame
        missing_factors = [f for f in factor_list if f not in dataframe.columns]
        if missing_factors:
            return {"error": f"Factors not found in DataFrame: {missing_factors}"}
        
        # Validate sum of squares type
        if sum_squares_type not in [1, 2, 3]:
            return {"error": "sum_squares_type must be 1, 2, or 3"}
        
        # Clean and prepare the data
        analysis_columns = [dependent_var] + factor_list
        analysis_df = dataframe[analysis_columns].copy()
        
        # Remove rows with missing values
        initial_rows = len(analysis_df)
        analysis_df = analysis_df.dropna()
        final_rows = len(analysis_df)
        
        if final_rows < initial_rows * 0.5:
            return {"error": f"Too much missing data: only {final_rows} out of {initial_rows} rows usable"}
        
        if final_rows < 20:
            return {"error": f"Insufficient data after removing missing values: {final_rows} rows remaining (minimum 20 required)"}
        
        # Validate dependent variable is numeric
        try:
            analysis_df[dependent_var] = pd.to_numeric(analysis_df[dependent_var])
        except:
            return {"error": f"Dependent variable '{dependent_var}' must be numeric"}
        
        # Ensure factors are categorical and check levels
        factor_level_counts = {}
        for factor in factor_list:
            analysis_df[factor] = analysis_df[factor].astype('category')
            unique_levels = len(analysis_df[factor].cat.categories)
            factor_level_counts[factor] = unique_levels
            
            if unique_levels < 2:
                return {"error": f"Factor '{factor}' must have at least 2 levels. Found {unique_levels} level(s)"}
            
            if unique_levels > 20:
                return {"error": f"Factor '{factor}' has too many levels ({unique_levels}). Consider combining levels or using a different analysis method"}
        
        # Check for sufficient observations per factor combination
        try:
            cell_counts = analysis_df.groupby(factor_list).size()
            min_cell_size = cell_counts.min()
            empty_cells = (cell_counts == 0).sum()
            
            if min_cell_size < 2:
                return {"error": f"Some factor combinations have fewer than 2 observations. Minimum cell size: {min_cell_size}"}
            
            if empty_cells > 0:
                return {"error": f"Missing data: {empty_cells} factor combinations have no observations"}
                
        except Exception as e:
            return {"error": f"Error checking experimental design: {str(e)}"}
        
        # Build formula components
        formula_terms = []
        
        # Add main effects (always included)
        for factor in factor_list:
            formula_terms.append(f"C({factor})")
        
        # Add interaction terms if requested
        if include_interactions and len(factor_list) > 1:
            max_order = max_interaction_order if max_interaction_order is not None else len(factor_list)
            max_order = min(max_order, len(factor_list))  # Don't exceed number of factors
            
            # Generate all interaction combinations
            for order in range(2, max_order + 1):
                for combination in itertools.combinations(factor_list, order):
                    interaction_term = ":".join([f"C({factor})" for factor in combination])
                    formula_terms.append(interaction_term)
        
        # Build the complete formula
        formula = f"{dependent_var} ~ " + " + ".join(formula_terms)
        
        # Fit the model
        try:
            model = ols(formula, data=analysis_df).fit()
        except Exception as e:
            return {"error": f"Model fitting failed: {str(e)}. This may indicate perfect multicollinearity or insufficient data variation"}
        
        # Generate ANOVA table
        try:
            anova_table = sm.stats.anova_lm(model, typ=sum_squares_type)
        except Exception as e:
            return {"error": f"ANOVA table generation failed: {str(e)}"}
        
        # Calculate effect sizes (eta-squared)
        effect_sizes = {}
        effect_interpretations = {}
        total_ss = anova_table['sum_sq'].sum()
        
        for index, row in anova_table.iterrows():
            if index != 'Residual':
                eta_squared = row['sum_sq'] / total_ss
                effect_sizes[index] = eta_squared
                
                # Interpret effect size
                small_threshold, medium_threshold, large_threshold = thresholds
                if eta_squared < small_threshold:
                    effect_interpretations[index] = "negligible"
                elif eta_squared < medium_threshold:
                    effect_interpretations[index] = "small"
                elif eta_squared < large_threshold:
                    effect_interpretations[index] = "medium"
                else:
                    effect_interpretations[index] = "large"
        
        # Identify significant effects
        significant_effects = []
        for index, row in anova_table.iterrows():
            if index != 'Residual' and row['PR(>F)'] < alpha:
                significant_effects.append(index)
        
        # Calculate factor summaries
        factor_summaries = {}
        for factor in factor_list:
            factor_stats = analysis_df.groupby(factor)[dependent_var].agg(['mean', 'std', 'count']).round(4)
            factor_summaries[factor] = factor_stats.to_dict('index')
        
        # Model summary statistics
        model_summary = {
            "r_squared": model.rsquared,
            "adj_r_squared": model.rsquared_adj,
            "f_statistic": model.fvalue,
            "f_pvalue": model.f_pvalue,
            "aic": model.aic,
            "bic": model.bic,
            "df_model": model.df_model,
            "df_resid": model.df_resid,
            "n_observations": int(model.nobs),
            "mse_resid": model.mse_resid
        }
        
        # Design summary
        total_combinations = np.prod(list(factor_level_counts.values()))
        observed_combinations = len(cell_counts)
        balanced = len(cell_counts.unique()) == 1  # All cells have same count
        
        design_summary = {
            "n_factors": len(factor_list),
            "factor_levels": factor_level_counts,
            "total_possible_combinations": total_combinations,
            "observed_combinations": observed_combinations,
            "is_balanced": balanced,
            "min_cell_size": int(min_cell_size),
            "max_cell_size": int(cell_counts.max()),
            "mean_cell_size": round(cell_counts.mean(), 2)
        }
            
        # Determine test description
        n_factors = len(factor_list)
        test_description = f"{n_factors}-way ANOVA"
        
        if include_interactions:
            max_order_desc = max_interaction_order if max_interaction_order else n_factors
            test_description += f" with interactions (up to {max_order_desc}-way)"
        else:
            test_description += " (main effects only)"
        
        return {
            "test_type": test_description,
            "anova_table": anova_table,
            "significant_effects": significant_effects,
            "effect_sizes": effect_sizes,
            "effect_interpretations": effect_interpretations,
            "factor_summaries": factor_summaries,
            "model_summary": model_summary,
            "formula_used": formula,
            "design_summary": design_summary,
            "alpha": alpha,
            "factors_analyzed": factor_list,
            "sum_squares_type": sum_squares_type,
            "effect_thresholds": thresholds
        }
        
    except Exception as e:
        return {"error": f"Unexpected error in multi-way ANOVA: {str(e)}"}

def chi_square_test(
    dataframe: Optional[pd.DataFrame] = None,
    observed_str: Optional[str] = None,
    expected_str: Optional[str] = None,
    alpha: float = 0.05,
    effect_thresholds: str = "0.1,0.3,0.5"
) -> Dict[str, Any]:
    """
    Accepts observed frequencies (and optionally expected frequencies) as comma-separated strings or DataFrame columns 
    and performs a chi-square goodness of fit test. This test determines whether observed categorical data frequencies 
    differ significantly from expected frequencies. If no expected frequencies are provided, the test assumes equal 
    distribution across all categories. The test calculates a chi-square statistic measuring the discrepancy between 
    observed and expected frequencies. A significant result (p-value < alpha) indicates that the observed distribution 
    differs from the expected distribution. Cramér's V measures effect size as the strength of association, with 
    interpretation: V < 0.1 = negligible, 0.1-0.3 = small, 0.3-0.5 = medium, >0.5 = large (custom thresholds may be used).
    EXAMPLE USE CASES: testing if dice rolls follow uniform distribution, comparing observed vs expected sales across 
    categories, analyzing survey response distributions.
    
    Args:
        dataframe (Optional[pd.DataFrame]): DataFrame containing frequency data in first column (observed) and 
                                           optionally second column (expected). If provided, string parameters will be ignored.
        observed_str (Optional[str]): Comma-separated string of observed frequencies.
                                     Example: "25,30,20,15" (frequencies for 4 categories)
                                     Only used if dataframe is None or empty.
        expected_str (Optional[str]): Comma-separated string of expected frequencies (optional).
                                     Example: "22.5,22.5,22.5,22.5" (equal distribution)
                                     If not provided, assumes equal distribution. Only used if dataframe is None or empty.
        alpha (float): Significance level for the test (probability of Type I error). Reject null hypothesis if p_value below this threshold.
                      Common values: 0.05 (5%), 0.01 (1%), 0.10 (10%)
        effect_thresholds (str): Three comma-separated values defining Cramér's V effect size boundaries.
                               Format: "small_threshold,medium_threshold,large_threshold"
                               Default "0.1,0.3,0.5" means: <0.1=negligible, 0.1-0.3=small, 0.3-0.5=medium, >0.5=large
    
    Returns:
        dict: Comprehensive test results with the following keys:
            - test_type (str): Always "Chi-square goodness of fit test"
            - chi_square_statistic (float): The calculated chi-square value measuring discrepancy from expected
            - p_value (float): Probability of observing this result if null hypothesis is true
            - degrees_of_freedom (int): df = categories - 1
            - cramers_v (float): Effect size measure (strength of association)
            - significant (bool): True if p_value < alpha
            - effect_size (str): Categorical interpretation of Cramér's V magnitude
            - alpha (float): Echo of significance level used
            - effect_thresholds (List[float]): Echo of effect size thresholds used
    """
    try:
        # Parse effect size thresholds
        try:
            thresholds = [float(x.strip()) for x in effect_thresholds.split(',')]
            if len(thresholds) != 3:
                return {"error": "Effect thresholds must be three comma-separated numbers (small,medium,large)"}
        except:
            return {"error": "Invalid effect thresholds format. Use 'small,medium,large' (e.g., '0.1,0.3,0.5')"}
        
        # Method 1: DataFrame input (preferred for LLMs and data pipelines)
        if dataframe is not None and not dataframe.empty:
            # Use first column for observed, second column for expected (if available)
            if len(dataframe.columns) < 1:
                return {"error": f"DataFrame must have at least 1 column. Found {len(dataframe.columns)} columns."}
            
            try:
                # Convert first column to numeric (observed frequencies)
                col1_numeric = pd.to_numeric(dataframe.iloc[:, 0], errors='coerce')
                observed = col1_numeric.dropna().tolist()
                
                # Check if we lost too much data
                original_count1 = len(dataframe.iloc[:, 0].dropna())
                if len(observed) < original_count1 * 0.5:
                    return {"error": f"Column 1 contains too many non-numeric values. Only {len(observed)} out of {original_count1} values could be converted to numbers."}
                
                # Check for second column (expected frequencies)
                if len(dataframe.columns) >= 2:
                    col2_numeric = pd.to_numeric(dataframe.iloc[:, 1], errors='coerce')
                    expected = col2_numeric.dropna().tolist()
                    
                    if len(expected) != len(observed):
                        return {"error": "Observed and expected columns must have the same number of valid entries."}
                else:
                    # Calculate equal distribution
                    total = sum(observed)
                    expected = [total / len(observed)] * len(observed)
                
            except Exception as e:
                return {"error": f"Error processing DataFrame columns: {str(e)}. Ensure columns contain numeric data."}
            
        # Method 2: String input (preferred for humans and simple use cases)
        elif observed_str and observed_str.strip():
            try:
                observed = parse_numeric_input(observed_str)
                
                if expected_str and expected_str.strip():
                    expected = parse_numeric_input(expected_str)
                    if len(observed) != len(expected):
                        return {"error": "Observed and expected must have the same number of categories."}
                else:
                    # Calculate equal distribution
                    total = sum(observed)
                    expected = [total / len(observed)] * len(observed)
                    
            except ValueError as e:
                return {"error": f"String parsing error: {str(e)}"}
            
        else:
            return {"error": "Please provide either a DataFrame with data OR a comma-separated string for observed frequencies. Do not leave input empty."}
        
        # Validate extracted data
        if len(observed) < 2:
            return {"error": f"Need at least 2 categories for chi-square test. Found {len(observed)} categories."}
        
        # Check for non-negative frequencies
        if any(x < 0 for x in observed) or any(x < 0 for x in expected):
            return {"error": "Frequencies cannot be negative."}
        
        # Check for zero expected frequencies
        if any(x <= 0 for x in expected):
            return {"error": "Expected frequencies must be greater than zero."}
        
        # Perform chi-square goodness of fit test
        observed_array = np.array(observed)
        expected_array = np.array(expected)
        
        # Perform chi-square test
        chi2_stat, p_value = stats.chisquare(observed_array, expected_array)
        
        # Degrees of freedom
        df = len(observed) - 1
        
        # Effect size (Cramér's V for goodness of fit)
        n = sum(observed)
        cramers_v = np.sqrt(chi2_stat / (n * df)) if df > 0 else 0
        
        # Interpretation using effect size thresholds
        significant = p_value < alpha
        small_threshold, medium_threshold, large_threshold = thresholds
        if cramers_v < small_threshold:
            effect_size_interp = "negligible"
        elif cramers_v < medium_threshold:
            effect_size_interp = "small"
        elif cramers_v < large_threshold:
            effect_size_interp = "medium"
        else:
            effect_size_interp = "large"
        
        return {
            "test_type": "Chi-square goodness of fit test",
            "chi_square_statistic": chi2_stat,
            "p_value": p_value,
            "degrees_of_freedom": df,
            "cramers_v": cramers_v,
            "significant": significant,
            "effect_size": effect_size_interp,
            "alpha": alpha,
            "effect_thresholds": thresholds
        }
        
    except Exception as e:
        return {"error": f"Unexpected error in chi-square test: {str(e)}"}


def correlation_test(
    dataframe: Optional[pd.DataFrame] = None,
    group1_str: Optional[str] = None,
    group2_str: Optional[str] = None,
    method: str = "pearson",
    alpha: float = 0.05,
    effect_thresholds: str = "0.1,0.3,0.5"
) -> Dict[str, Any]:
    """
    Accepts two variables as comma-separated strings or DataFrame columns and performs correlation analysis. 
    This test determines the strength and direction of the linear relationship between two continuous variables. 
    Pearson correlation measures linear relationships, Spearman correlation measures monotonic relationships 
    (rank-based), and Kendall's tau is robust to outliers and suitable for small samples. The test calculates 
    a correlation coefficient ranging from -1 (perfect negative correlation) to +1 (perfect positive correlation), 
    with 0 indicating no linear relationship. A significant result (p-value < alpha) indicates that the observed 
    correlation is statistically different from zero. Effect size interpretation: |r| < 0.1 = negligible, 
    0.1-0.3 = small, 0.3-0.5 = medium, >0.5 = large (custom thresholds may be used).
    EXAMPLE USE CASES: examining relationship between height and weight, analyzing correlation between study time 
    and test scores, investigating association between variables in research.
    
    Args:
        dataframe (Optional[pd.DataFrame]): DataFrame containing two variables in first two columns. 
                                           If provided, group1_str and group2_str will be ignored.
        group1_str (Optional[str]): Comma-separated string of numeric values for the first variable (X).
                                   Example: "5.2,6.1,4.8,7.3" (hours studied)
                                   Only used if dataframe is None or empty.
        group2_str (Optional[str]): Comma-separated string of numeric values for the second variable (Y).
                                   Example: "78,85,72,92" (test scores)
                                   Only used if dataframe is None or empty.
        method (str): Correlation method to use:
                     - "pearson": Pearson product-moment correlation (linear relationships)
                     - "spearman": Spearman rank correlation (monotonic relationships)
                     - "kendall": Kendall's tau (robust to outliers, good for small samples)
        alpha (float): Significance level for the test (probability of Type I error). Reject null hypothesis if p_value below this threshold.
                      Common values: 0.05 (5%), 0.01 (1%), 0.10 (10%)
        effect_thresholds (str): Three comma-separated values defining correlation effect size boundaries.
                               Format: "small_threshold,medium_threshold,large_threshold"
                               Default "0.1,0.3,0.5" means: <0.1=negligible, 0.1-0.3=small, 0.3-0.5=medium, >0.5=large
    
    Returns:
        dict: Comprehensive test results with the following keys:
            - test_type (str): Type of correlation test performed
            - correlation_coefficient (float): The calculated correlation coefficient (-1 to +1)
            - p_value (float): Probability of observing this result if null hypothesis (no correlation) is true
            - sample_size (int): Number of paired observations
            - significant (bool): True if p_value < alpha
            - effect_size (str): Categorical interpretation of correlation magnitude
            - method (str): Echo of correlation method used
            - alpha (float): Echo of significance level used
            - effect_thresholds (List[float]): Echo of effect size thresholds used
            - group1_stats (dict): Descriptive statistics for first variable (mean, std, n)
            - group2_stats (dict): Descriptive statistics for second variable (mean, std, n)
    """
    try:
        # Parse effect size thresholds
        try:
            thresholds = [float(x.strip()) for x in effect_thresholds.split(',')]
            if len(thresholds) != 3:
                return {"error": "Effect thresholds must be three comma-separated numbers (small,medium,large)"}
        except:
            return {"error": "Invalid effect thresholds format. Use 'small,medium,large' (e.g., '0.1,0.3,0.5')"}
        
        # Method 1: DataFrame input (preferred for LLMs and data pipelines)
        if dataframe is not None and not dataframe.empty:
            # Use first two columns
            if len(dataframe.columns) < 2:
                return {"error": f"DataFrame must have at least 2 columns for correlation. Found {len(dataframe.columns)} columns."}
            
            try:
                # Convert to numeric, coercing errors to NaN
                col1_numeric = pd.to_numeric(dataframe.iloc[:, 0], errors='coerce')
                col2_numeric = pd.to_numeric(dataframe.iloc[:, 1], errors='coerce')
                
                # Remove rows where either value is NaN
                valid_mask = ~(col1_numeric.isna() | col2_numeric.isna())
                group1 = col1_numeric[valid_mask].tolist()
                group2 = col2_numeric[valid_mask].tolist()
                
                # Check if we lost too much data
                original_count = len(dataframe)
                if len(group1) < original_count * 0.5:
                    return {"error": f"Too many non-numeric values in the data. Only {len(group1)} out of {original_count} rows could be used."}
                
            except Exception as e:
                return {"error": f"Error processing DataFrame columns: {str(e)}. Ensure columns contain numeric data."}
            
        # Method 2: String input (preferred for humans and simple use cases)
        elif group1_str and group2_str and group1_str.strip() and group2_str.strip():
            try:
                group1 = parse_numeric_input(group1_str)
                group2 = parse_numeric_input(group2_str)
                
                if len(group1) != len(group2):
                    return {"error": f"Variables must have the same number of observations. Variable 1 has {len(group1)}, Variable 2 has {len(group2)}."}
                    
            except ValueError as e:
                return {"error": f"String parsing error: {str(e)}"}
            
        else:
            return {"error": "Please provide either a DataFrame with data OR comma-separated strings for both variables. Do not leave inputs empty."}
        
        # Validate extracted data
        if len(group1) < 3:
            return {"error": f"Need at least 3 paired observations for correlation. Found {len(group1)} pairs."}
        
        # Perform correlation analysis
        data1 = np.array(group1)
        data2 = np.array(group2)
        
        # Choose correlation method
        method_lower = method.lower()
        if method_lower == "pearson":
            corr_coef, p_value = stats.pearsonr(data1, data2)
            test_name = "Pearson correlation"
        elif method_lower == "spearman":
            corr_coef, p_value = stats.spearmanr(data1, data2)
            test_name = "Spearman rank correlation"
        elif method_lower == "kendall":
            corr_coef, p_value = stats.kendalltau(data1, data2)
            test_name = "Kendall's tau correlation"
        else:
            return {"error": "Method must be 'pearson', 'spearman', or 'kendall'"}
        
        # Calculate descriptive statistics
        desc1 = {"mean": np.mean(data1), "std": np.std(data1, ddof=1), "n": len(data1)}
        desc2 = {"mean": np.mean(data2), "std": np.std(data2, ddof=1), "n": len(data2)}
        
        # Interpretation using effect size thresholds
        significant = p_value < alpha
        abs_corr = abs(corr_coef)
        small_threshold, medium_threshold, large_threshold = thresholds
        if abs_corr < small_threshold:
            effect_size_interp = "negligible"
        elif abs_corr < medium_threshold:
            effect_size_interp = "small"
        elif abs_corr < large_threshold:
            effect_size_interp = "medium"
        else:
            effect_size_interp = "large"
        
        return {
            "test_type": test_name,
            "correlation_coefficient": corr_coef,
            "p_value": p_value,
            "sample_size": len(data1),
            "significant": significant,
            "effect_size": effect_size_interp,
            "method": method_lower,
            "alpha": alpha,
            "effect_thresholds": thresholds,
            "group1_stats": desc1,
            "group2_stats": desc2
        }
        
    except Exception as e:
        return {"error": f"Unexpected error in correlation test: {str(e)}"}

# SHARED UTILITY FUNCTIONS (Hidden from MCP)
def load_uploaded_file(file_path, has_header_flag):
    """Shared function to load uploaded files and return both the DataFrame and preview."""
    if file_path is None:
        return None, None
    
    try:
        # Determine header parameter for pandas
        header_param = 0 if has_header_flag else None
        
        if file_path.endswith('.csv'):
            df = pd.read_csv(file_path, header=header_param)
        elif file_path.endswith(('.xlsx', '.xls')):
            df = pd.read_excel(file_path, header=header_param)
        else:
            return None, pd.DataFrame({'Error': ['Unsupported file format']})
        
        # Take only first two columns
        if len(df.columns) >= 2:
            df_subset = df.iloc[:, :2].copy()
            
            # Set column names based on whether headers were detected
            if has_header_flag and not str(df_subset.columns[0]).startswith('Unnamed'):
                # Keep original column names if they exist and aren't auto-generated
                df_subset.columns = [str(df_subset.columns[0]), str(df_subset.columns[1])]
            else:
                # Use default names
                df_subset.columns = ['Group1', 'Group2']
            
            # Convert columns to numeric, replacing non-numeric with NaN
            df_subset.iloc[:, 0] = pd.to_numeric(df_subset.iloc[:, 0], errors='coerce')
            df_subset.iloc[:, 1] = pd.to_numeric(df_subset.iloc[:, 1], errors='coerce')
            
            # Remove rows where both values are NaN
            df_subset = df_subset.dropna(how='all')
            
            # Return full dataframe for processing and preview for display
            preview = df_subset.head(10)  # Show first 10 rows
            return df_subset, preview
        else:
            error_df = pd.DataFrame({'Error': ['File must have at least 2 columns']})
            return None, error_df
    except Exception as e:
        error_df = pd.DataFrame({'Error': [f"Failed to load file: {str(e)}"]})
        return None, error_df

def toggle_input_method(method):
    """Toggle between file upload and text input sections."""
    if method == "File Upload":
        return gr.update(visible=True), gr.update(visible=False)
    else:
        return gr.update(visible=False), gr.update(visible=True)

def clear_all():
    """Clear all form inputs and reset to defaults."""
    return (
        "File Upload",  # input_method
        None,           # loaded_dataframe
        None,           # data_preview
        "",             # group1_str
        "",             # group2_str
        "two-sided",    # alternative
        0.05,           # alpha
        "0.2,0.5,0.8",  # effect_thresholds
        {}              # output
    )

def load_example():
    """Load example data for demonstration purposes."""
    example_df = pd.DataFrame({
        'Treatment': [85.2, 90.1, 78.5, 92.3, 88.7, 86.4, 89.2],
        'Control': [88.1, 85.7, 91.2, 87.4, 89.3, 90.8, 86.9]
    })
    preview = example_df.head(10)
    return "File Upload", example_df, preview, "", ""

# COMPONENT FACTORY FUNCTIONS
def create_input_components():
    """Create reusable input components for both test tabs."""
    # Input method selector
    input_method = gr.Radio(
        choices=["File Upload", "Text Input"],
        value="File Upload",
        label="Choose Input Method",
        info="Select how you want to provide your data"
    )
    
    # File upload input section
    with gr.Group(visible=True) as file_section:
        gr.Markdown("### File Upload")
        gr.Markdown("*Upload CSV or Excel file - first two columns will be used as Group 1 and Group 2*")
        
        with gr.Row():
            file_upload = gr.File(
                label="Upload CSV/Excel File",
                file_types=[".csv", ".xlsx", ".xls"],
                type="filepath"
            )
            has_header = gr.Checkbox(
                label="File has header row",
                value=True,
                info="Check if first row contains column names"
            )
            
        # Display loaded data preview
        data_preview = gr.Dataframe(
            label="Data Preview (first two columns)",
            interactive=False,
            row_count=5
        )
    
    # Text input section
    with gr.Group(visible=False) as text_section:
        gr.Markdown("### Text Input")
        gr.Markdown("*Enter comma-separated numbers for each group*")
        
        group1_str = gr.Textbox(
            placeholder="85.2,90.1,78.5,92.3,88.7",
            label="Group 1 Data",
            info="Comma-separated numbers (e.g., test scores for condition A)"
        )
        group2_str = gr.Textbox(
            placeholder="88.1,85.7,91.2,87.4,89.3", 
            label="Group 2 Data",
            info="Comma-separated numbers (e.g., test scores for condition B)"
        )
    
    return input_method, file_section, text_section, file_upload, has_header, data_preview, group1_str, group2_str

def create_parameter_components():
    """Create reusable parameter components for both test tabs."""
    gr.Markdown("### Test Parameters")
    with gr.Row():
        alternative = gr.Dropdown(
            choices=["two-sided", "less", "greater"], 
            value="two-sided", 
            label="Alternative Hypothesis",
            info="two-sided: groups differ; less: group1 < group2; greater: group1 > group2"
        )
        alpha = gr.Number(
            value=0.05, 
            minimum=0, 
            maximum=1, 
            step=0.01, 
            label="Significance Level (α)",
            info="Probability threshold for statistical significance (typically 0.05)"
        )
        effect_thresholds = gr.Textbox(
            value="0.2,0.5,0.8",
            label="Effect Size Thresholds",
            info="Cohen's d boundaries: small,medium,large (Cohen's canonical values)"
        )
    
    return alternative, alpha, effect_thresholds

def create_t_test_tab(test_function, test_name, description):
    """
    Factory function to create a complete t-test tab with all components and handlers.
    
    Args:
        test_function: The statistical function to call (student_t_test or welch_t_test)
        test_name: Display name for the tab (e.g., "Student's T-Test")
        description: Markdown description to show at the top of the tab
    
    Returns:
        dict: Dictionary containing all created components and state for external reference
    """
    
    with gr.TabItem(test_name):
        gr.Markdown(description)
        
        # Create input components
        (input_method, file_section, text_section, file_upload, 
         has_header, data_preview, group1_str, group2_str) = create_input_components()
        
        # Create parameter components
        alternative, alpha, effect_thresholds = create_parameter_components()
        
        # Create action buttons
        with gr.Row():
            run_button = gr.Button(f"Run {test_name}", variant="primary", scale=1)
            clear_button = gr.Button("Clear All", variant="secondary", scale=1)
        
        # Output display
        output = gr.JSON(label="Statistical Test Results")
        
        # Example data section
        with gr.Row():
            gr.Markdown("### Quick Examples")
            example_button = gr.Button("Load Example Data", variant="outline")
        
        # State management
        loaded_dataframe = gr.State(value=None)
        
        # EVENT HANDLERS
        # Toggle between input methods
        input_method.change(
            fn=toggle_input_method,
            inputs=input_method,
            outputs=[file_section, text_section],
            show_api=False  # Hide UI helper from MCP
        )
        
        # File upload handlers
        file_upload.change(
            fn=load_uploaded_file,
            inputs=[file_upload, has_header],
            outputs=[loaded_dataframe, data_preview],
            show_api=False  # Hide UI helper from MCP
        )
        
        has_header.change(
            fn=load_uploaded_file,
            inputs=[file_upload, has_header],
            outputs=[loaded_dataframe, data_preview],
            show_api=False  # Hide UI helper from MCP
        )
        
        # MAIN STATISTICAL FUNCTION CALL - This will be exposed to MCP!
        run_button.click(
            fn=test_function,  # Direct call to the statistical function
            inputs=[
                loaded_dataframe,   # dataframe
                group1_str,         # group1_str  
                group2_str,         # group2_str
                alternative,        # alternative
                alpha,              # alpha
                effect_thresholds   # effect_thresholds
            ],
            outputs=output
            # Note: No show_api=False here - we want the main function exposed to MCP!
        )
        
        # Clear form handler
        clear_button.click(
            fn=clear_all,
            outputs=[
                input_method, loaded_dataframe, data_preview, 
                group1_str, group2_str, alternative, 
                alpha, effect_thresholds, output
            ],
            show_api=False  # Hide UI helper from MCP
        )
        
        # Example data handler
        example_button.click(
            fn=load_example,
            outputs=[input_method, loaded_dataframe, data_preview, 
                    group1_str, group2_str],
            show_api=False  # Hide UI helper from MCP
        )
    
    # Return components for external reference if needed
    return {
        'input_method': input_method,
        'file_upload': file_upload,
        'has_header': has_header,
        'data_preview': data_preview,
        'group1_str': group1_str,
        'group2_str': group2_str,
        'alternative': alternative,
        'alpha': alpha,
        'effect_thresholds': effect_thresholds,
        'run_button': run_button,
        'clear_button': clear_button,
        'example_button': example_button,
        'output': output,
        'loaded_dataframe': loaded_dataframe
    }

def create_one_sample_t_test_tab():
    """Create a complete one-sample t-test tab with all components and handlers."""
    
    with gr.TabItem("One-Sample T-Test"):
        gr.Markdown("**Test a sample against a known population mean**")
        
        # Input method selector
        input_method = gr.Radio(
            choices=["File Upload", "Text Input"],
            value="File Upload",
            label="Choose Input Method",
            info="Select how you want to provide your data"
        )
        
        # File upload input section
        with gr.Group(visible=True) as file_section:
            gr.Markdown("### File Upload")
            gr.Markdown("*Upload CSV or Excel file - first column will be used as sample data*")
            
            with gr.Row():
                file_upload = gr.File(
                    label="Upload CSV/Excel File",
                    file_types=[".csv", ".xlsx", ".xls"],
                    type="filepath"
                )
                has_header = gr.Checkbox(
                    label="File has header row",
                    value=True,
                    info="Check if first row contains column names"
                )
                
            # Display loaded data preview
            data_preview = gr.Dataframe(
                label="Data Preview (first column)",
                interactive=False,
                row_count=5
            )
        
        # Text input section
        with gr.Group(visible=False) as text_section:
            gr.Markdown("### Text Input")
            gr.Markdown("*Enter comma-separated numbers for your sample*")
            
            group_str = gr.Textbox(
                placeholder="85.2,90.1,78.5,92.3,88.7",
                label="Sample Data",
                info="Comma-separated numbers (e.g., test scores, measurements)"
            )
        
        # Test parameters
        gr.Markdown("### Test Parameters")
        with gr.Row():
            population_mean = gr.Number(
                value=0.0,
                label="Population Mean (μ₀)",
                info="Known or hypothesized population mean to test against"
            )
            alternative = gr.Dropdown(
                choices=["two-sided", "less", "greater"], 
                value="two-sided", 
                label="Alternative Hypothesis",
                info="two-sided: sample ≠ population; less: sample < population; greater: sample > population"
            )
        
        with gr.Row():
            alpha = gr.Number(
                value=0.05, 
                minimum=0, 
                maximum=1, 
                step=0.01, 
                label="Significance Level (α)",
                info="Probability threshold for statistical significance (typically 0.05)"
            )
            effect_thresholds = gr.Textbox(
                value="0.2,0.5,0.8",
                label="Effect Size Thresholds",
                info="Cohen's d boundaries: small,medium,large"
            )
        
        # Action buttons
        with gr.Row():
            run_button = gr.Button("Run One-Sample T-Test", variant="primary", scale=1)
            clear_button = gr.Button("Clear All", variant="secondary", scale=1)
        
        # Output display
        output = gr.JSON(label="Statistical Test Results")
        
        # Example data section
        with gr.Row():
            gr.Markdown("### Quick Examples")
            example_button = gr.Button("Load Example Data", variant="outline")
        
        # State management
        loaded_dataframe = gr.State(value=None)
        
        # EVENT HANDLERS
        # Toggle between input methods
        input_method.change(
            fn=toggle_input_method,
            inputs=input_method,
            outputs=[file_section, text_section],
            show_api=False
        )
        
        # File upload handlers
        file_upload.change(
            fn=load_uploaded_file,
            inputs=[file_upload, has_header],
            outputs=[loaded_dataframe, data_preview],
            show_api=False
        )
        
        has_header.change(
            fn=load_uploaded_file,
            inputs=[file_upload, has_header],
            outputs=[loaded_dataframe, data_preview],
            show_api=False
        )
        
        # MAIN STATISTICAL FUNCTION CALL - Exposed to MCP!
        run_button.click(
            fn=one_sample_t_test,
            inputs=[
                loaded_dataframe,    # dataframe
                group_str,           # group_str
                population_mean,     # population_mean
                alternative,         # alternative
                alpha,               # alpha
                effect_thresholds    # effect_thresholds
            ],
            outputs=output
        )
        
        # Clear form handler
        def clear_one_sample():
            return (
                "File Upload",      # input_method
                None,               # loaded_dataframe
                None,               # data_preview
                "",                 # group_str
                0.0,                # population_mean
                "two-sided",        # alternative
                0.05,               # alpha
                "0.2,0.5,0.8",      # effect_thresholds
                {}                  # output
            )
        
        clear_button.click(
            fn=clear_one_sample,
            outputs=[
                input_method, loaded_dataframe, data_preview, 
                group_str, population_mean, alternative, 
                alpha, effect_thresholds, output
            ],
            show_api=False
        )
        
        # Example data handler
        def load_one_sample_example():
            example_data = "100,105,98,102,97,103,99,101,96,104"
            return "Text Input", None, None, example_data, 100.0
        
        example_button.click(
            fn=load_one_sample_example,
            outputs=[input_method, loaded_dataframe, data_preview, group_str, population_mean],
            show_api=False
        )


def create_anova_tab():
    """Create a complete one-way ANOVA tab with all components and handlers."""
    
    with gr.TabItem("One-Way ANOVA"):
        gr.Markdown("**Compare means across multiple independent groups**")
        
        # Input method selector
        input_method = gr.Radio(
            choices=["File Upload", "Text Input"],
            value="File Upload",
            label="Choose Input Method",
            info="Select how you want to provide your data"
        )
        
        # File upload input section
        with gr.Group(visible=True) as file_section:
            gr.Markdown("### File Upload")
            gr.Markdown("*Upload CSV or Excel file - each column will be treated as a separate group*")
            
            with gr.Row():
                file_upload = gr.File(
                    label="Upload CSV/Excel File",
                    file_types=[".csv", ".xlsx", ".xls"],
                    type="filepath"
                )
                has_header = gr.Checkbox(
                    label="File has header row",
                    value=True,
                    info="Check if first row contains column names"
                )
                
            # Display loaded data preview
            data_preview = gr.Dataframe(
                label="Data Preview (all columns as groups)",
                interactive=False,
                row_count=5
            )
        
        # Text input section
        with gr.Group(visible=False) as text_section:
            gr.Markdown("### Text Input")
            gr.Markdown("*Enter groups separated by semicolons (;) with comma-separated values within each group*")
            
            groups_str = gr.Textbox(
                placeholder="85.2,90.1,78.5;88.1,85.7,91.2;82.3,87.4,89.1",
                label="Groups Data",
                info="Format: group1_values;group2_values;group3_values (e.g., treatment A;treatment B;control)",
                lines=3
            )
            
            gr.Markdown("**Example**: `85.2,90.1,78.5;88.1,85.7,91.2;82.3,87.4,89.1` represents 3 groups with their respective measurements")
        
        # Test parameters
        gr.Markdown("### Test Parameters")
        with gr.Row():
            alpha = gr.Number(
                value=0.05, 
                minimum=0, 
                maximum=1, 
                step=0.01, 
                label="Significance Level (α)",
                info="Probability threshold for statistical significance (typically 0.05)"
            )
            effect_thresholds = gr.Textbox(
                value="0.01,0.06,0.14",
                label="Effect Size Thresholds",
                info="Eta-squared (η²) boundaries: small,medium,large"
            )
        
        # Action buttons
        with gr.Row():
            run_button = gr.Button("Run One-Way ANOVA", variant="primary", scale=1)
            clear_button = gr.Button("Clear All", variant="secondary", scale=1)
        
        # Output display
        output = gr.JSON(label="Statistical Test Results")
        
        # Interpretation note
        gr.Markdown("""
        ### Post-Hoc Note
        If ANOVA shows significant differences (p < α), consider running post-hoc tests to identify which specific groups differ from each other.
        """)
        
        # Example data section
        with gr.Row():
            gr.Markdown("### Quick Examples")
            example_button = gr.Button("Load Example Data", variant="outline")
        
        # State management
        loaded_dataframe = gr.State(value=None)
        
        # EVENT HANDLERS
        # Toggle between input methods
        input_method.change(
            fn=toggle_input_method,
            inputs=input_method,
            outputs=[file_section, text_section],
            show_api=False
        )
        
        # File upload handlers
        file_upload.change(
            fn=load_uploaded_file,
            inputs=[file_upload, has_header],
            outputs=[loaded_dataframe, data_preview],
            show_api=False
        )
        
        has_header.change(
            fn=load_uploaded_file,
            inputs=[file_upload, has_header],
            outputs=[loaded_dataframe, data_preview],
            show_api=False
        )
        
        # MAIN STATISTICAL FUNCTION CALL - Exposed to MCP!
        run_button.click(
            fn=one_way_anova,
            inputs=[
                loaded_dataframe,    # dataframe
                groups_str,          # groups_str
                alpha,               # alpha
                effect_thresholds    # effect_thresholds
            ],
            outputs=output
        )
        
        # Clear form handler
        def clear_anova():
            return (
                "File Upload",      # input_method
                None,               # loaded_dataframe
                None,               # data_preview
                "",                 # groups_str
                0.05,               # alpha
                "0.01,0.06,0.14",   # effect_thresholds
                {}                  # output
            )
        
        clear_button.click(
            fn=clear_anova,
            outputs=[
                input_method, loaded_dataframe, data_preview, 
                groups_str, alpha, effect_thresholds, output
            ],
            show_api=False
        )
        
        # Example data handler
        def load_anova_example():
            example_data = "85.2,90.1,78.5,92.3;88.1,85.7,91.2,87.4;82.3,87.4,89.1,83.7"
            return "Text Input", None, None, example_data
        
        example_button.click(
            fn=load_anova_example,
            outputs=[input_method, loaded_dataframe, data_preview, groups_str],
            show_api=False
        )

def create_multi_way_anova_tab():
    """Create a complete multi-way ANOVA tab with all components and handlers."""
    
    with gr.TabItem("Multi-Way ANOVA"):
        gr.Markdown("**Compare means across multiple categorical factors simultaneously**")
        
        # Input method selector
        input_method = gr.Radio(
            choices=["File Upload"],
            value="File Upload",
            label="Input Method",
            info="Multi-way ANOVA requires structured data - file upload recommended"
        )
        
        # File upload input section
        with gr.Group(visible=True) as file_section:
            gr.Markdown("### File Upload")
            gr.Markdown("*Upload CSV or Excel file with dependent variable and multiple categorical factors*")
            
            with gr.Row():
                file_upload = gr.File(
                    label="Upload CSV/Excel File",
                    file_types=[".csv", ".xlsx", ".xls"],
                    type="filepath"
                )
                has_header = gr.Checkbox(
                    label="File has header row",
                    value=True,
                    info="Check if first row contains column names"
                )
                
            # Display loaded data preview
            data_preview = gr.Dataframe(
                label="Data Preview",
                interactive=False,
                row_count=10
            )
        
        # Variable specification
        gr.Markdown("### Variable Specification")
        with gr.Row():
            dependent_var = gr.Dropdown(
                label="Dependent Variable",
                info="Select the continuous outcome variable",
                interactive=True
            )
            factors = gr.Textbox(
                label="Factors (comma-separated)",
                placeholder="treatment,gender,age_group",
                info="Enter factor column names separated by commas",
                lines=2
            )
        
        # Advanced options
        gr.Markdown("### Analysis Options")
        with gr.Row():
            include_interactions = gr.Checkbox(
                label="Include Interactions",
                value=True,
                info="Test for interaction effects between factors"
            )
            max_interaction_order = gr.Number(
                label="Max Interaction Order",
                value=None,
                minimum=2,
                step=1,
                info="Maximum interaction order (leave empty for all interactions)"
            )
        
        with gr.Row():
            sum_squares_type = gr.Dropdown(
                choices=[1, 2, 3],
                value=2,
                label="Sum of Squares Type",
                info="Type 2 for balanced, Type 3 for unbalanced designs"
            )
            alpha = gr.Number(
                value=0.05,
                minimum=0,
                maximum=1,
                step=0.01,
                label="Significance Level (α)",
                info="Probability threshold for statistical significance"
            )
        
        with gr.Row():
            effect_thresholds = gr.Textbox(
                value="0.01,0.06,0.14",
                label="Effect Size Thresholds",
                info="Eta-squared boundaries: small,medium,large"
            )
        
        # Action buttons
        with gr.Row():
            run_button = gr.Button("Run Multi-Way ANOVA", variant="primary", scale=1)
            clear_button = gr.Button("Clear All", variant="secondary", scale=1)
        
        # Output display
        output = gr.JSON(label="Multi-Way ANOVA Results")
        
        # Information section
        with gr.Accordion("Multi-Way ANOVA Information", open=False):
            gr.Markdown("""
            ### What is Multi-Way ANOVA?
            
            Multi-way ANOVA extends one-way ANOVA to handle multiple categorical factors simultaneously:
            
            **Main Effects**: How each factor independently affects the outcome
            **Interaction Effects**: How factors work together (non-additively)
            
            ### Example Designs:
            - **2-way**: Treatment (A,B,C) × Gender (Male,Female) → 6 combinations
            - **3-way**: Drug (A,B) × Dose (Low,High) × Age (Young,Old) → 8 combinations  
            - **4-way**: Method (A,B) × School (Public,Private) × Gender (M,F) × Grade (1st,2nd) → 16 combinations
            
            ### Requirements:
            - All factors must be categorical (not continuous)
            - Dependent variable must be continuous
            - At least 2 observations per factor combination
            - Independence, normality, and equal variances assumptions
            """)
        
        # Example data section
        with gr.Row():
            gr.Markdown("### Quick Examples")
            example_button = gr.Button("Load Example Data", variant="outline")
        
        # State management
        loaded_dataframe = gr.State(value=None)
        
        # Helper function to load and preview file data
        def load_multi_way_file(file_path, has_header_flag):
            if file_path is None:
                return None, None, []
            
            try:
                # Determine header parameter
                header_param = 0 if has_header_flag else None
                
                if file_path.endswith('.csv'):
                    df = pd.read_csv(file_path, header=header_param)
                elif file_path.endswith(('.xlsx', '.xls')):
                    df = pd.read_excel(file_path, header=header_param)
                else:
                    return None, pd.DataFrame({'Error': ['Unsupported file format']}), []
                
                # Set column names if no header
                if not has_header_flag:
                    df.columns = [f'Column_{i+1}' for i in range(len(df.columns))]
                
                # Get column options for dropdown
                column_options = list(df.columns)
                
                # Return dataframe, preview, and column options
                preview = df.head(15)
                return df, preview, column_options
                
            except Exception as e:
                error_df = pd.DataFrame({'Error': [f"Failed to load file: {str(e)}"]})
                return None, error_df, []
        
        # Clear form function
        def clear_multi_way():
            return (
                None,               # loaded_dataframe
                None,               # data_preview
                [],                 # dependent_var choices
                None,               # dependent_var value
                "",                 # factors
                True,               # include_interactions
                None,               # max_interaction_order
                2,                  # sum_squares_type
                0.05,               # alpha
                "0.01,0.06,0.14",   # effect_thresholds
                {}                  # output
            )
        
        # Example data function
        def load_multi_way_example():
            # Create example 3-way ANOVA data
            np.random.seed(42)
            
            treatments = ['Control', 'Treatment_A', 'Treatment_B']
            genders = ['Male', 'Female']
            ages = ['Young', 'Old']
            
            data = []
            for treatment in treatments:
                for gender in genders:
                    for age in ages:
                        # Generate scores with different effects
                        base_score = 50
                        treatment_effect = {'Control': 0, 'Treatment_A': 8, 'Treatment_B': 12}[treatment]
                        gender_effect = {'Male': 3, 'Female': -3}[gender] 
                        age_effect = {'Young': 5, 'Old': -5}[age]
                        
                        # Add interaction: Treatment_B works better for older patients
                        interaction_effect = 0
                        if treatment == 'Treatment_B' and age == 'Old':
                            interaction_effect = 6
                        
                        n_per_cell = 15
                        mean_score = base_score + treatment_effect + gender_effect + age_effect + interaction_effect
                        scores = np.random.normal(mean_score, 6, n_per_cell)
                        
                        for score in scores:
                            data.append({
                                'test_score': round(score, 2),
                                'treatment': treatment,
                                'gender': gender,
                                'age_group': age
                            })
            
            df = pd.DataFrame(data)
            preview = df.head(15)
            column_options = list(df.columns)
            
            return df, preview, column_options, 'test_score', 'treatment,gender,age_group'
        
        # EVENT HANDLERS
        
        # File upload handlers
        file_upload.change(
            fn=load_multi_way_file,
            inputs=[file_upload, has_header],
            outputs=[loaded_dataframe, data_preview, dependent_var],
            show_api=False
        )
        
        has_header.change(
            fn=load_multi_way_file,
            inputs=[file_upload, has_header],
            outputs=[loaded_dataframe, data_preview, dependent_var],
            show_api=False
        )
        
        # MAIN STATISTICAL FUNCTION CALL - Exposed to MCP!
        run_button.click(
            fn=multi_way_anova,
            inputs=[
                loaded_dataframe,       # dataframe
                dependent_var,          # dependent_var
                factors,                # factors
                alpha,                  # alpha
                effect_thresholds,      # effect_thresholds
                include_interactions,   # include_interactions
                max_interaction_order,  # max_interaction_order
                sum_squares_type        # sum_squares_type
            ],
            outputs=output
        )
        
        # Clear form handler
        clear_button.click(
            fn=clear_multi_way,
            outputs=[
                loaded_dataframe, data_preview, dependent_var, dependent_var,
                factors, include_interactions, max_interaction_order,
                sum_squares_type, alpha, effect_thresholds, output
            ],
            show_api=False
        )
        
        # Example data handler
        example_button.click(
            fn=load_multi_way_example,
            outputs=[loaded_dataframe, data_preview, dependent_var, dependent_var, factors],
            show_api=False
        )

def create_chi_square_tab():
    """Create a complete chi-square goodness of fit test tab with all components and handlers."""
    
    with gr.TabItem("Chi-Square Test"):
        gr.Markdown("**Test if observed frequencies differ from expected frequencies**")
        
        # Input method selector
        input_method = gr.Radio(
            choices=["File Upload", "Text Input"],
            value="File Upload",
            label="Choose Input Method",
            info="Select how you want to provide your data"
        )
        
        # File upload input section
        with gr.Group(visible=True) as file_section:
            gr.Markdown("### File Upload")
            gr.Markdown("*Upload CSV or Excel file - first column: observed frequencies, second column: expected frequencies (optional)*")
            
            with gr.Row():
                file_upload = gr.File(
                    label="Upload CSV/Excel File",
                    file_types=[".csv", ".xlsx", ".xls"],
                    type="filepath"
                )
                has_header = gr.Checkbox(
                    label="File has header row",
                    value=True,
                    info="Check if first row contains column names"
                )
                
            # Display loaded data preview
            data_preview = gr.Dataframe(
                label="Data Preview (observed and expected frequencies)",
                interactive=False,
                row_count=5
            )
        
        # Text input section
        with gr.Group(visible=False) as text_section:
            gr.Markdown("### Text Input")
            gr.Markdown("*Enter comma-separated frequency values*")
            
            observed_str = gr.Textbox(
                placeholder="25,30,20,15",
                label="Observed Frequencies",
                info="Comma-separated observed frequencies for each category"
            )
            
            expected_str = gr.Textbox(
                placeholder="22.5,22.5,22.5,22.5",
                label="Expected Frequencies (Optional)",
                info="Comma-separated expected frequencies. Leave empty for equal distribution"
            )
        
        # Test parameters
        gr.Markdown("### Test Parameters")
        with gr.Row():
            alpha = gr.Number(
                value=0.05, 
                minimum=0, 
                maximum=1, 
                step=0.01, 
                label="Significance Level (α)",
                info="Probability threshold for statistical significance (typically 0.05)"
            )
            effect_thresholds = gr.Textbox(
                value="0.1,0.3,0.5",
                label="Effect Size Thresholds",
                info="Cramér's V boundaries: small,medium,large"
            )
        
        # Action buttons
        with gr.Row():
            run_button = gr.Button("Run Chi-Square Test", variant="primary", scale=1)
            clear_button = gr.Button("Clear All", variant="secondary", scale=1)
        
        # Output display
        output = gr.JSON(label="Statistical Test Results")
        
        # Example data section
        with gr.Row():
            gr.Markdown("### Quick Examples")
            example_button = gr.Button("Load Example Data", variant="outline")
        
        # State management
        loaded_dataframe = gr.State(value=None)
        
        # EVENT HANDLERS
        # Toggle between input methods
        input_method.change(
            fn=toggle_input_method,
            inputs=input_method,
            outputs=[file_section, text_section],
            show_api=False
        )
        
        # File upload handlers
        file_upload.change(
            fn=load_uploaded_file,
            inputs=[file_upload, has_header],
            outputs=[loaded_dataframe, data_preview],
            show_api=False
        )
        
        has_header.change(
            fn=load_uploaded_file,
            inputs=[file_upload, has_header],
            outputs=[loaded_dataframe, data_preview],
            show_api=False
        )
        
        # MAIN STATISTICAL FUNCTION CALL - Exposed to MCP!
        run_button.click(
            fn=chi_square_test,
            inputs=[
                loaded_dataframe,    # dataframe
                observed_str,        # observed_str
                expected_str,        # expected_str
                alpha,               # alpha
                effect_thresholds    # effect_thresholds
            ],
            outputs=output
        )
        
        # Clear form handler
        def clear_chi_square():
            return (
                "File Upload",      # input_method
                None,               # loaded_dataframe
                None,               # data_preview
                "",                 # observed_str
                "",                 # expected_str
                0.05,               # alpha
                "0.1,0.3,0.5",      # effect_thresholds
                {}                  # output
            )
        
        clear_button.click(
            fn=clear_chi_square,
            outputs=[
                input_method, loaded_dataframe, data_preview, 
                observed_str, expected_str, alpha, effect_thresholds, output
            ],
            show_api=False
        )
        
        # Example data handler
        def load_chi_square_example():
            observed_example = "25,30,20,15"
            expected_example = "22.5,22.5,22.5,22.5"
            return "Text Input", None, None, observed_example, expected_example
        
        example_button.click(
            fn=load_chi_square_example,
            outputs=[input_method, loaded_dataframe, data_preview, observed_str, expected_str],
            show_api=False
        )


def create_correlation_tab():
    """Create a complete correlation analysis tab with all components and handlers."""
    
    with gr.TabItem("Correlation Test"):
        gr.Markdown("**Analyze the relationship between two continuous variables**")
        
        # Input method selector
        input_method = gr.Radio(
            choices=["File Upload", "Text Input"],
            value="File Upload",
            label="Choose Input Method",
            info="Select how you want to provide your data"
        )
        
        # File upload input section
        with gr.Group(visible=True) as file_section:
            gr.Markdown("### File Upload")
            gr.Markdown("*Upload CSV or Excel file - first two columns will be used as the two variables*")
            
            with gr.Row():
                file_upload = gr.File(
                    label="Upload CSV/Excel File",
                    file_types=[".csv", ".xlsx", ".xls"],
                    type="filepath"
                )
                has_header = gr.Checkbox(
                    label="File has header row",
                    value=True,
                    info="Check if first row contains column names"
                )
                
            # Display loaded data preview
            data_preview = gr.Dataframe(
                label="Data Preview (first two columns as variables)",
                interactive=False,
                row_count=5
            )
        
        # Text input section
        with gr.Group(visible=False) as text_section:
            gr.Markdown("### Text Input")
            gr.Markdown("*Enter comma-separated values for each variable*")
            
            group1_str = gr.Textbox(
                placeholder="5.2,6.1,4.8,7.3,5.9",
                label="Variable 1 (X)",
                info="Comma-separated numbers (e.g., hours studied, height, age)"
            )
            
            group2_str = gr.Textbox(
                placeholder="78,85,72,92,81",
                label="Variable 2 (Y)",
                info="Comma-separated numbers (e.g., test scores, weight, income)"
            )
        
        # Test parameters
        gr.Markdown("### Test Parameters")
        with gr.Row():
            method = gr.Dropdown(
                choices=["pearson", "spearman", "kendall"], 
                value="pearson", 
                label="Correlation Method",
                info="pearson: linear relationships; spearman: monotonic; kendall: robust to outliers"
            )
            alpha = gr.Number(
                value=0.05, 
                minimum=0, 
                maximum=1, 
                step=0.01, 
                label="Significance Level (α)",
                info="Probability threshold for statistical significance (typically 0.05)"
            )
        
        with gr.Row():
            effect_thresholds = gr.Textbox(
                value="0.1,0.3,0.5",
                label="Effect Size Thresholds",
                info="Correlation coefficient boundaries: small,medium,large"
            )
        
        # Action buttons
        with gr.Row():
            run_button = gr.Button("Run Correlation Test", variant="primary", scale=1)
            clear_button = gr.Button("Clear All", variant="secondary", scale=1)
        
        # Output display
        output = gr.JSON(label="Statistical Test Results")
        
        # Example data section
        with gr.Row():
            gr.Markdown("### Quick Examples")
            example_button = gr.Button("Load Example Data", variant="outline")
        
        # State management
        loaded_dataframe = gr.State(value=None)
        
        # EVENT HANDLERS
        # Toggle between input methods
        input_method.change(
            fn=toggle_input_method,
            inputs=input_method,
            outputs=[file_section, text_section],
            show_api=False
        )
        
        # File upload handlers
        file_upload.change(
            fn=load_uploaded_file,
            inputs=[file_upload, has_header],
            outputs=[loaded_dataframe, data_preview],
            show_api=False
        )
        
        has_header.change(
            fn=load_uploaded_file,
            inputs=[file_upload, has_header],
            outputs=[loaded_dataframe, data_preview],
            show_api=False
        )
        
        # MAIN STATISTICAL FUNCTION CALL - Exposed to MCP!
        run_button.click(
            fn=correlation_test,
            inputs=[
                loaded_dataframe,    # dataframe
                group1_str,          # group1_str
                group2_str,          # group2_str
                method,              # method
                alpha,               # alpha
                effect_thresholds    # effect_thresholds
            ],
            outputs=output
        )
        
        # Clear form handler
        def clear_correlation():
            return (
                "File Upload",      # input_method
                None,               # loaded_dataframe
                None,               # data_preview
                "",                 # group1_str
                "",                 # group2_str
                "pearson",          # method
                0.05,               # alpha
                "0.1,0.3,0.5",      # effect_thresholds
                {}                  # output
            )
        
        clear_button.click(
            fn=clear_correlation,
            outputs=[
                input_method, loaded_dataframe, data_preview, 
                group1_str, group2_str, method, alpha, effect_thresholds, output
            ],
            show_api=False
        )
        
        # Example data handler
        def load_correlation_example():
            x_example = "5.2,6.1,4.8,7.3,5.9,6.8,4.5,7.1"
            y_example = "78,85,72,92,81,89,70,88"
            return "Text Input", None, None, x_example, y_example
        
        example_button.click(
            fn=load_correlation_example,
            outputs=[input_method, loaded_dataframe, data_preview, group1_str, group2_str],
            show_api=False
        )

def create_t_test_interface():
    """Create the complete t-test interface with both Student's and Welch's tabs."""
    
    with gr.Blocks(title="T-Test Analysis", theme=gr.themes.Soft()) as demo:
        
        gr.Markdown("""
        # Statistical Analysis MCP
        """)
        
        with gr.Tabs():
            # Create Student's t-test tab
            student_components = create_t_test_tab(
                test_function=student_t_test,
                test_name="Student's T-Test",
                description="**t-test between independent groups assuming equal population variances**"
            )
            
            # Create Welch's t-test tab  
            welch_components = create_t_test_tab(
                test_function=welch_t_test,
                test_name="Welch's T-Test", 
                description="**t-test between independent groups that does not assume equal population variances**"
            )

            # Create paired t-test tab  
            paired_components = create_t_test_tab(
                test_function=paired_t_test,
                test_name="Paired T-Test", 
                description="**t-test between paired groups**"
            )

            one_sample_components = create_one_sample_t_test_tab()
            anova_components = create_anova_tab()
            manova_components = create_multi_way_anova_tab()
            chi_square_components = create_chi_square_tab()
            corr_components = create_correlation_tab()
    
    return demo

# Main execution
if __name__ == "__main__":
    demo = create_t_test_interface()
    demo.launch(mcp_server=True)