File size: 27,383 Bytes
1196f2a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 |
# app.py
import os
import re
import json
import gradio as gr
from llama_cloud_services import LlamaParse
from openai import OpenAI
from dotenv import load_dotenv
from weasyprint import HTML
from pathlib import Path
import requests
MAX_AUDIO_SLIDES = 15
load_dotenv()
OUTPUT_DIR = Path("generated_pdf_files")
OUTPUT_DIR.mkdir(exist_ok=True)
OUTPUT_DIR_AUDIO = Path("generated_audio_files")
OUTPUT_DIR_AUDIO.mkdir(exist_ok=True)
MODAL_TTS_URL = os.environ.get("MODAL_TTS_URL")
SNC_API_KEY = os.environ.get("SNC_API_KEY")
# LlamaParse Client for document parsing
LLAMA_CLOUD_API = os.environ.get("LLAMA_CLOUD_API_KEY")
llama_parser_client = None
if LLAMA_CLOUD_API:
try:
llama_parser_client = LlamaParse(api_key=LLAMA_CLOUD_API, result_type="markdown", num_workers=4, language='en', verbose=False)
print("β
LlamaParse client initialized successfully.")
except Exception as e:
print(f"β Error initializing LlamaParse client: {e}")
else:
print('β οΈ WARNING: LLAMA_CLOUD_API_KEY not found. Document Parsing will be disabled.')
# Nebius Client for AI generation
NEBIUS_API_KEY = os.environ.get("NEBIUS_API_KEY")
nebius_client = None
if NEBIUS_API_KEY:
try:
nebius_client = OpenAI(
base_url="https://api.studio.nebius.com/v1/",
api_key=NEBIUS_API_KEY
)
print("β
Nebius client initialized successfully.")
except Exception as e:
print(f"β Error initializing Nebius client: {e}")
else:
print('β οΈ WARNING: NEBIUS_API_KEY not found. All AI generation tools will be disabled.')
sambanova_client = None
if SNC_API_KEY:
sambanova_client = OpenAI(api_key=SNC_API_KEY, base_url='https://api.sambanova.ai/v1')
print("β
Sambanova client initialized successfully.")
else:
print('β οΈ WARNING: SNC_API_KEY not found. All AI generation tools will be disabled.')
# Tool 1: Document Parser
def parse_documents_tool(files_input_from_gradio: list) -> str:
"""Parses uploaded documents using LlamaParse into clean Markdown text."""
if not llama_parser_client: raise gr.Error("LlamaParse client not initialized.")
if not files_input_from_gradio: raise gr.Error("No files provided for parsing.")
file_paths = [f.name for f in files_input_from_gradio]
try:
print(f"Tool 1 (LlamaParse): Parsing {len(file_paths)} documents...")
llama_index_documents = llama_parser_client.load_data(file_paths)
final_markdown = "\n\n<!-- ========== Next Document ========== -->\n\n".join([doc.text for doc in llama_index_documents if doc.text])
print(f"Tool 1 (LlamaParse): Success. Total Markdown length: {len(final_markdown)}")
return final_markdown
except Exception as e:
print(f"β Error in parse_documents_tool: {e}")
raise gr.Error(f"LlamaParse failed: {str(e)}")
# Tool 2: Creative Plan Generator (Augment, Outline, Design)
def generate_rich_content_and_theme_tool(parsed_markdown: str, user_topic: str) -> str:
"""
Analyzes text and a topic to generate a comprehensive JSON 'master plan' for a presentation,
including a visual theme, slide structure, augmented content, and visualization ideas.
"""
if not nebius_client: raise gr.Error("Nebius client not initialized.")
#
prompt = f"""
You are a Chief Creative Officer and an expert AI Art Director. Your task is to take raw text and a presentation topic and create a master plan for a stunning visual report. The output MUST be a single, valid JSON object.
**Your Plan (JSON Object) Must Contain:**
1. `visual_theme`: An object describing the aesthetic with `theme_name`, `primary_color`, `secondary_color`, `accent_color`, `font_headings`, and `font_body`.
2. `presentation_title`: A compelling title.
3. `slides`: An array of slide objects. For each slide:
- `slide_title`: A clear title.
- `key_points`: An array of critical bullet points.
- `augmented_info`: Additional context and details.
- `visualization_suggestion`: A practical idea for a non-image visual element (e.g., "A pure CSS bar chart...").
- **`image_generation_prompt`**: An **OPTIONAL** key. Only include this key for the slides you select for an image.
- **`speaker_notes_text`**: Contains a script for this slide. The text should be engaging, expand on the key points, and guide a presenter on how to deliver the content.
**CRITICAL ART DIRECTION RULES:**
1. **Selectivity is Key:** Your goal is to select only a **few (2-4) high-impact slides** to feature an image. Do not add an image prompt to every slide. Prompts must be specific and conceptual.
2. **Title Slide is Mandatory:** The **first (title) slide MUST have an `image_generation_prompt`** to create a strong opening.
3. **Use Color Names, Not Hex Codes:** In the image prompt, you MUST use the descriptive color `name` you generated (e.g., "Dominant colors: Deep Space Blue, Solar Orange"). **DO NOT use hex codes in the image prompt.**
3. **Choose Wisely:** For the other 1-3 images, choose slides that have a strong, singular, and visualizable concept. Slides that are very dense with text or data charts are poor candidates for an image.
4. **Content-Specific Prompts:** The `image_generation_prompt` MUST be highly specific to the content of that slide. It should generate a conceptual, artistic image that represents the slide's core idea. Use descriptive keywords.
- **Good Example:** For a slide about financial growth, a good prompt is "Minimalist vector illustration of a green arrow moving upwards through a field of abstract data points, clean background, corporate style."
- **Bad Example:** "An image about finance." (Too generic!)
- **Text in Images:** When writing an `image_generation_prompt`, AVOID including complex text. If text is necessary, keep it to one or two simple words and specify it clearly, e.g., "with the word 'Growth' elegantly integrated". Image models are bad at rendering lots of text.
5. **Speaker Notes:** The `speaker_notes_text` should NOT simply repeat the on-slide text. It should provide a narrative, give background, and guide the presenter.
**Instructions for `image_generation_prompt` for the 'flux-schnell' model:**
- Focus on keywords like: "minimalist illustration", "conceptual art", "vector graphic", "isometric design", "abstract shapes", "data visualization art".
- Incorporate the `visual_theme` colors into the prompt (e.g., "Dominant colors: [primary_color], [accent_color]").
**Presentation Topic:** "{user_topic}"
**Parsed Document Text:** --- {parsed_markdown} ---
Begin JSON Output:
"""
try:
# response = nebius_client.chat.completions.create(
# model="deepseek-ai/DeepSeek-V3-0324",
# messages=[{"role": "user", "content": prompt}],
# temperature=0.4,
# max_tokens=8192,
# response_format={"type": "json_object"},
# )
print("Tool 2 (Creative Plan): Calling Sambanova (DeepSeek-V3-0324)...")
response = sambanova_client.chat.completions.create(
model="DeepSeek-V3-0324",
messages=[{"role": "user", "content": prompt}],
temperature=0.4,
max_tokens=8192,
response_format={"type": "json_object"},
)
rich_content_json = response.choices[0].message.content
print("\n--- DEBUG: Raw Creative Plan JSON from Model ---\n", rich_content_json, "\n----------------------------------------\n")
json.loads(rich_content_json)
print("Tool 2 (Creative Plan): Success.")
return rich_content_json
except Exception as e:
print(f"β Error in generate_rich_content_and_theme_tool: {e}")
raise gr.Error(f"Creative plan generation failed: {str(e)}")
def generate_assets_tool(json_plan_str: str) -> str:
"""
Takes a JSON plan, generates images for each slide using the provided prompts,
and returns an updated JSON plan with image URLs.
"""
if not nebius_client: raise gr.Error("Nebius client not initialized.")
print("Tool 3 (Asset Gen): Starting image generation for all slides...")
plan_data = json.loads(json_plan_str)
for i, slide in enumerate(plan_data["slides"]):
image_prompt = slide.get("image_generation_prompt")
if not image_prompt:
print(f" - Skipping slide {i+1}, no image prompt found.")
plan_data["slides"][i]["image_url"] = None # Explicitly set to null
continue
print(f" - Generating image for slide {i+1}: '{slide['slide_title']}'...")
try:
response = nebius_client.images.generate(
model="black-forest-labs/flux-schnell",
prompt=image_prompt,
response_format="url",
extra_body={
"width": 1024,
"height": 1024,
"num_inference_steps": 4,
},
)
image_url = response.data[0].url
plan_data["slides"][i]["image_url"] = image_url
print(f" - Success! Image URL: {image_url}")
except Exception as e:
print(f" - β FAILED to generate image for slide {i+1}: {e}")
plan_data["slides"][i]["image_url"] = None
return json.dumps(plan_data)
# Tool 4: Audio Asset Generator
def generate_audio_assets_tool(json_plan_str: str):
"""
Takes a JSON plan, generates audio for each slide using the Modal TTS API,
and returns an updated JSON plan with audio URLs.
"""
if not MODAL_TTS_URL:
print("β οΈ WARNING: MODAL_TTS_URL not set. Skipping audio generation.")
return json_plan_str
print("Tool 4 (Audio Gen): Starting TTS for all slides via Modal API...")
plan_data = json.loads(json_plan_str)
for i, slide in enumerate(plan_data["slides"]):
notes_text = slide.get("speaker_notes_text")
if not notes_text:
print(f" - Skipping audio for slide {i+1}, no speaker notes text found.")
plan_data["slides"][i]["audio_url"] = None
continue
print(f" - Generating audio for slide {i+1}...")
try:
payload = {"text": notes_text, "voice": "af_heart"}
headers = {"Content-Type": "application/json"}
response = requests.post(MODAL_TTS_URL, json=payload, headers=headers, timeout=180)
if response.status_code == 200:
audio_path = OUTPUT_DIR_AUDIO / f"slide_audio_{i}.wav"
with open(audio_path, "wb") as f:
f.write(response.content)
plan_data["slides"][i]["audio_url"] = str(audio_path)
print(f" - Success! Audio saved to {audio_path}")
else:
print(f" - β FAILED to generate audio for slide {i+1}. Status: {response.status_code}, Response: {response.text}")
plan_data["slides"][i]["audio_url"] = None
except Exception as e:
print(f" - β FAILED to generate audio for slide {i+1} with exception: {e}")
plan_data["slides"][i]["audio_url"] = None
# return json.dumps(plan_data)
yield plan_data
# Tool 3: HTML Presentation Renderer
def convert_rich_content_to_html_tool(rich_content_json: str) -> str:
"""Takes a rich JSON 'master plan' and renders it as a single, static HTML file."""
if not nebius_client: raise gr.Error("Nebius client not initialized.")
prompt = f"""
You are a '10x' Staff Front-End Engineer and a world-class Information Designer. You are an expert in creating beautiful, accessible, and high-performance static web reports from data. You have a deep understanding of web standards and know how to interpret technical requirements pragmatically.
**Core Mandate:**
Your task is to take the provided JSON design brief and transform it into a single, static, scrollable HTML file that is both breathtakingly beautiful and easy to understand.
**STRICT TECHNICAL RULES:**
1. **NO JAVASCRIPT.** The final output must be pure HTML and CSS.
2. **NO INTERACTIVE NAVIGATION.** The page is a static report that users will scroll through.
3. **SELF-CONTAINED.** All CSS must be embedded in `<style>` tags in the `<head>`.
4. **RAW HTML ONLY.** Your output must be ONLY the raw HTML code, starting with `<!DOCTYPE html>`.
5. **Regarding "Self-Contained":** This rule applies to your authored CSS. You ARE PERMITTED and EXPECTED to use `<link>` tags in the `<head>` to import third-party resources like the required Google Fonts and the Font Awesome CSS library from their CDNs. This is standard industry practice and is not a violation of the rules.
**DESIGN & EXECUTION DIRECTIVES:**
- **Modern Stack & Philosophy:** Use modern **HTML5** semantic tags and advanced **CSS3** features. Your design must be inspired by the principles of utility-first frameworks like **Tailwind CSS** (consistent spacing, colors, typography).
- **Accessibility First:** Ensure all `<img>` tags have descriptive `alt` attributes. Use semantic HTML correctly to ensure the report is accessible.
- **Theme Implementation:** Flawlessly execute the `visual_theme` from the JSON. Create CSS variables for all colors and use the specified Google Fonts and Font Awesome icons.
- **Ambitious Visualizations:** For each `visualization_suggestion`, be ambitious! Use clever CSS to create impressive **static** representations like charts, diagrams, or beautiful card layouts.
---
**CRITICAL LAYOUT & ASSET INSTRUCTION (NEW):**
- The JSON for each slide may or may not contain an `image_url`. Your layout must adapt beautifully to both cases.
- **If a slide HAS an `image_url`:**
1. You **MUST** create a **two-column layout** (e.g., using CSS Grid `grid-template-columns: 1fr 1fr;`).
2. Place the image in one column, rendered as a standard `<img>` tag. Style it to be a **square** with a subtle `box-shadow` and `border-radius`.
3. Place all the text content (`slide_title`, `key_points`, `augmented_info`, and `visualization_suggestion`) in the other column.
- **If a slide does NOT have an `image_url`:**
1. You **MUST** use a **single, full-width column layout**.
2. This creates a more focused, text-and-data-centric slide, providing visual variety.
- This adaptive layout strategy is crucial for a professional and dynamic presentation.
- This is the most important rule for handling visual elements. Follow it precisely:
1. **If a slide CONTAINS an `image_url`:**
- The `image_url` is the **PRIMARY** visual element for that slide. Your main job is to display it beautifully.
- You should **NOT** build a complex, redundant CSS representation for the `visualization_suggestion`.
- Instead, simply render the text of the `visualization_suggestion` as a small, styled **caption** or note below the main text (e.g., inside a `<footer>` tag with italics). This provides context without clutter.
2. **If a slide does NOT contain an `image_url`:**
- The `visualization_suggestion` becomes the **PRIMARY** visual element.
- In this case, and ONLY in this case, you **MUST** be ambitious and use your expert CSS skills to build the impressive static representation described in the suggestion (e.g., charts, diagrams, timelines).
- **Title Legibility & Contrast (Crucial Rule):** The slide title (`<h2>`) is the most important piece of text on the slide and **MUST** be perfectly legible.
- **Background:** The element containing the title MUST have a solid, opaque background color (e.g., using `background-color: var(--primary);`). **DO NOT** place title text directly on top of a gradient or background image where contrast may vary.
- **Text Color:** The title's text color MUST have a very high contrast against its solid background. A simple, effective rule is: use a pure white (`#FFFFFF`) or very light theme color for dark backgrounds, and a pure black (`#000000`) or very dark theme color for light backgrounds. Legibility is more important than using a specific theme color for the text if it creates poor contrast.
---
**CRITICAL CONTENT INSTRUCTION:**
- Your goal is to create a **cohesive narrative** for each slide by intelligently combining `key_points` and `augmented_info`.
- Treat the `key_points` as the main headlines and the `augmented_info` as the supporting details. Weave them together naturally.
- The final slide should feel like a single, well-structured piece of content.
---
**JSON Design Brief:**
{rich_content_json}
Begin HTML Output:
"""
try:
# print("Tool 3 (HTML Renderer): Calling SambaNova (DeepSeek-R1-Distill-Llama-70B)...")
# response = sambanova_client.chat.completions.create(
# model="DeepSeek-R1-Distill-Llama-70B",
# messages=[{"role": "user", "content": prompt}],
# temperature=0.1,
# max_tokens=65536,
# )
print("Tool 3 (HTML Renderer): Calling Nebius (DeepSeek-R1-0528)...")
response = nebius_client.chat.completions.create(
model="deepseek-ai/DeepSeek-R1-0528",
messages=[{"role": "user", "content": prompt}],
temperature=0.1,
max_tokens=65536,
)
html_output = response.choices[0].message.content
print("\n--- DEBUG: Raw HTML from Model (first 4000 chars) ---\n", html_output[:8000], "\n--------------------------------------------\n")
match = re.search(r"```(?:html)?\s*(<!DOCTYPE html>[\s\S]*?</html>)\s*```", html_output, re.I | re.S)
if match:
html_output = match.group(1)
print("Tool 3 (HTML Renderer): Success.")
return html_output.strip()
except Exception as e:
print(f"β Error in convert_rich_content_to_html_tool: {e}")
raise gr.Error(f"HTML rendering failed: {str(e)}")
def create_pdf_from_html(html_content: str, filename: str = "presentation.pdf") -> str | None:
"""Converts a string of HTML content into a PDF file on disk."""
try:
print("Tool 4 (PDF): Generating PDF from HTML and saving to disk...")
pdf_path = OUTPUT_DIR / filename
HTML(string=html_content).write_pdf(pdf_path)
print(f"Tool 4 (PDF): Success. Saved to {pdf_path}")
return str(pdf_path)
except Exception as e:
print(f"β Error in PDF generation: {e}")
return None
MAX_AUDIO_SLIDES = 15
def execute_agent_task(uploaded_files_list, user_topic_input):
"""
Orchestrates the full tool chain and updates the UI with native audio components.
"""
def log_message(icon, message): return f"<p style='margin-bottom: 5px;'>{icon} {message}</p>"
if not uploaded_files_list:
raise gr.Error("Please upload at least one document to start.")
if not user_topic_input.strip():
gr.Warning("Please describe the presentation topic for better results!")
user_topic_input = "A professional summary."
initial_audio_updates = [gr.Audio(visible=False, value=None) for _ in range(MAX_AUDIO_SLIDES)]
initial_state = [
"<p><i>Starting agent...</i></p>",
None, None, None, None,
gr.Button(interactive=False), gr.DownloadButton(visible=False),
*initial_audio_updates
]
yield initial_state
logs = log_message("π", "Agent task started...")
try:
logs += log_message("π", "<b>Step 1: Parsing Documents...</b>")
yield [logs, *initial_state[1:]]
parsed_markdown = parse_documents_tool(uploaded_files_list)
logs += log_message("β
", "Document parsing successful.")
yield [logs, parsed_markdown, *initial_state[2:]]
logs += log_message("π¨", "<b>Step 2: Generating Creative Plan...</b>")
yield [logs, parsed_markdown, *initial_state[2:]]
rich_content_json_str = generate_rich_content_and_theme_tool(parsed_markdown, user_topic_input)
logs += log_message("β
", "Creative plan generated.")
pretty_json_plan = json.dumps(json.loads(rich_content_json_str), indent=2)
yield [logs, parsed_markdown, pretty_json_plan, *initial_state[3:]]
logs += log_message("πΌοΈ", "<b>Step 3: Generating AI Images...</b>")
yield [logs, parsed_markdown, pretty_json_plan, *initial_state[3:]]
final_plan_with_images_str = generate_assets_tool(rich_content_json_str)
logs += log_message("β
", "Image generation complete.")
pretty_final_plan_with_images = json.dumps(json.loads(final_plan_with_images_str), indent=2)
yield [logs, parsed_markdown, pretty_final_plan_with_images, *initial_state[3:]]
logs += log_message("π", "<b>Step 4: Generating Speaker Notes Audio...</b>")
final_plan_data = None
# Looping over the audio files that are generated
for i, partial_plan_data in enumerate(generate_audio_assets_tool(final_plan_with_images_str)):
final_plan_data = partial_plan_data
audio_updates = [gr.Audio(visible=False, value=None) for _ in range(MAX_AUDIO_SLIDES)]
total_slides = len(final_plan_data.get("slides", []))
for j, slide in enumerate(final_plan_data["slides"]):
if j < MAX_AUDIO_SLIDES:
if audio_url := slide.get("audio_url"):
slide_title = slide.get("slide_title", f"Slide {j+1}")
audio_updates[j] = gr.Audio(visible=True, value=audio_url, label=f"Notes for: {slide_title}", interactive=True)
temp_logs = logs + log_message("βοΈ", f"<i>Generated audio for slide {i+1}/{total_slides}...</i>")
pretty_plan_so_far = json.dumps(final_plan_data, indent=2)
yield [
temp_logs, parsed_markdown, pretty_plan_so_far, None, None,
gr.Button(interactive=False), gr.DownloadButton(visible=False),
*audio_updates
]
if final_plan_data is None:
logs += log_message("β οΈ", "Audio generation was skipped.")
final_plan_data = json.loads(final_plan_with_images_str)
logs += log_message("β
", "Audio generation complete.")
final_plan_with_audio_str = json.dumps(final_plan_data)
final_audio_updates = [gr.Audio(visible=False, value=None) for _ in range(MAX_AUDIO_SLIDES)]
for i, slide in enumerate(final_plan_data["slides"]):
if i < MAX_AUDIO_SLIDES:
if audio_url := slide.get("audio_url"):
slide_title = slide.get("slide_title", f"Slide {i+1}")
final_audio_updates[i] = gr.Audio(visible=True, value=audio_url, label=f"Notes for: {slide_title}", interactive=True)
final_pretty_json = json.dumps(final_plan_data, indent=2)
logs += log_message("π»", "<b>Step 5: Rendering Final HTML...</b>")
yield [
logs, parsed_markdown, final_pretty_json, None, None,
gr.Button(interactive=False), gr.DownloadButton(visible=False),
*final_audio_updates
]
final_html = convert_rich_content_to_html_tool(final_plan_with_audio_str)
raw_html_output = final_html
logs += log_message("πΎ", "<b>Step 6: Generating Downloadable PDF...</b>")
pdf_file_path = create_pdf_from_html(final_html)
if pdf_file_path:
logs += log_message("π", "<b>Hooray! All assets generated!</b>")
download_button_update = gr.DownloadButton(value=pdf_file_path, visible=True)
else:
logs += log_message("β οΈ", "<b>PDF creation failed.</b>")
download_button_update = gr.DownloadButton(visible=False)
yield [
logs, parsed_markdown, final_pretty_json, final_html, raw_html_output,
gr.Button(value="π Run Again", interactive=True),
download_button_update,
*final_audio_updates
]
except Exception as e:
import traceback
traceback.print_exc()
print(f"π₯π₯π₯ A CRITICAL ERROR OCCURRED: {e}")
logs += log_message("π₯", f"<b>A critical error occurred:</b> {str(e)}")
yield [logs, *initial_state[1:]]
custom_css = """
#logs-box { height: 100%; min-height: 200px; overflow-y: auto; border: 1px solid #e0e0e0; border-radius: 8px; padding: 10px; background-color: #f9f9f9; }
#presentation-output { height: 85vh; }
"""
with gr.Blocks(title="Agentic Presentation Generator", theme=gr.themes.Soft(), css=custom_css) as demo:
gr.Markdown("# π€ SlideDeck AI : Document-to-Presentation Generator")
gr.Markdown("Upload documents and describe your presentation's goal. The agent will analyze, generate a creative plan, and render a beautiful, static web presentation with AI-narrated speaker notes.")
with gr.Row():
with gr.Column(scale=1):
file_uploads = gr.File(label="1. Upload Your Documents", file_count="multiple")
user_topic_input = gr.Textbox(label="2. Describe the Presentation's Topic & Goal", placeholder="e.g., Create an Presentation on this topic.")
submit_button = gr.Button("π Run Agent Task", variant="primary")
download_pdf_btn = gr.DownloadButton(label="Download as PDF", visible=False)
gr.Markdown("### π Agent Logs")
with gr.Column(elem_id="logs-box"):
agent_logs_display = gr.HTML(value="<p><i>Logs will appear here...</i></p>")
with gr.Column(scale=3):
with gr.Tabs(selected="final_presentation_tab"):
with gr.TabItem("π Intermediate Markdown"):
intermediate_md_display = gr.Markdown()
with gr.TabItem("π¨ Creative Plan (JSON)"):
intermediate_json_display = gr.Code(language="json")
with gr.TabItem("π Speaker Notes Audio"):
with gr.Column():
gr.Markdown("Listen to the AI-generated speaker notes for each slide. Audio will appear here once generated.")
audio_players = []
for i in range(MAX_AUDIO_SLIDES):
player = gr.Audio(label=f"Slide {i+1} Audio", visible=False, interactive=False)
audio_players.append(player)
with gr.TabItem("β
Final Presentation", id="final_presentation_tab"):
final_html_display = gr.HTML(elem_id="presentation-output")
with gr.TabItem("π Raw HTML Code"):
raw_html_code_display = gr.Code(language="html", label="Generated HTML Source Code")
all_outputs = [
agent_logs_display,
intermediate_md_display,
intermediate_json_display,
final_html_display,
raw_html_code_display,
submit_button,
download_pdf_btn,
*audio_players
]
all_inputs = [file_uploads, user_topic_input]
submit_button.click(
fn=execute_agent_task,
inputs=all_inputs,
outputs=all_outputs
)
if __name__ == "__main__":
demo.launch(mcp_server=True, debug=True) |