File size: 32,136 Bytes
e6c3213 6279b2d e6c3213 6279b2d e6c3213 6279b2d e6c3213 6279b2d e6c3213 6279b2d e6c3213 6279b2d e6c3213 6279b2d e6c3213 6279b2d e6c3213 6279b2d e6c3213 6279b2d e6c3213 6279b2d e6c3213 6279b2d e6c3213 6279b2d e6c3213 6279b2d e6c3213 6279b2d e6c3213 6279b2d e6c3213 6279b2d e6c3213 6279b2d e6c3213 6279b2d e6c3213 6279b2d e6c3213 6279b2d e6c3213 6279b2d e6c3213 6279b2d e6c3213 6279b2d e6c3213 6279b2d e6c3213 6279b2d e6c3213 6279b2d e6c3213 6279b2d e6c3213 6279b2d e6c3213 6279b2d e6c3213 6279b2d e6c3213 6279b2d e6c3213 6279b2d e6c3213 6279b2d e6c3213 6279b2d e6c3213 6279b2d e6c3213 6279b2d e6c3213 6279b2d e6c3213 6279b2d e6c3213 6279b2d e6c3213 6279b2d e6c3213 6279b2d e6c3213 6279b2d 4e984de 6279b2d 4e984de 6279b2d 4e984de 6279b2d 4e984de 6279b2d e6c3213 6279b2d e6c3213 190b5c5 4e984de eca2420 4e984de eca2420 e6c3213 190b5c5 4e984de 190b5c5 4e984de 190b5c5 4e984de 190b5c5 4e984de 190b5c5 4e984de 190b5c5 4e984de 190b5c5 4e984de 190b5c5 4e984de 190b5c5 e6c3213 6279b2d e6c3213 6279b2d e6c3213 6279b2d e6c3213 6279b2d e6c3213 6279b2d e6c3213 6279b2d e6c3213 6279b2d e6c3213 6279b2d e6c3213 6279b2d e6c3213 6279b2d e6c3213 6279b2d e6c3213 6279b2d e6c3213 6279b2d e6c3213 6279b2d e6c3213 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 |
import gradio as gr
import requests
from typing import List, Dict
from huggingface_hub import HfApi
import os
from dotenv import load_dotenv
from pinecone import Pinecone
from openai import OpenAI
import re
# Load environment variables
load_dotenv()
# Initialize HF API with token if available
HF_TOKEN = os.getenv("HF_TOKEN")
api = HfApi(token=HF_TOKEN) if HF_TOKEN else HfApi()
def keyword_search_hf_spaces(query: str = "", limit: int = 3) -> Dict:
"""
Search for MCPs in Hugging Face Spaces.
Args:
query: Search query string
limit: Maximum number of results to return (default: 3)
Returns:
Dictionary containing search results with MCP information
"""
try:
# Use list_spaces API with mcp-server filter and sort by likes
spaces = list(api.list_spaces(
search=query,
sort="likes",
direction=-1, # Descending order
filter="mcp-server"
))
results = []
for space in spaces[:limit]: # Process up to limit matches
try:
# Convert space ID to URL format - replace all special chars with hyphens
space_id_lower = re.sub(r'[^a-z0-9]', '-', space.id.lower())
# Remove consecutive hyphens
space_id_lower = re.sub(r'-+', '-', space_id_lower)
# Remove leading and trailing hyphens
space_id_lower = space_id_lower.strip('-')
sse_url = f"https://{space_id_lower}.hf.space/gradio_api/mcp/sse"
space_info = {
"id": space.id,
"likes": space.likes,
"trending_score": space.trending_score,
"source": "huggingface",
"configuration": {
"gradio": {
"command": "npx", # Use npx to run MCP-Remote
"args": [
"mcp-remote",
sse_url,
"--transport",
"sse-only"
]
}
}
}
results.append(space_info)
except Exception as e:
continue
return {
"results": results,
"total": len(results)
}
except Exception as e:
return {
"error": str(e),
"results": [],
"total": 0
}
def keyword_search_smithery(query: str = "", limit: int = 3, os_type: str = "Mac/Linux") -> Dict:
"""
Search for MCPs in Smithery Registry.
Args:
query: Search query string
limit: Maximum number of results to return (default: 3)
os_type: Operating system type ("Mac/Linux", "Windows", "WSL")
Returns:
Dictionary containing search results with MCP information
"""
try:
# Get Smithery token from environment
SMITHERY_TOKEN = os.getenv("SMITHERY_TOKEN")
if not SMITHERY_TOKEN:
return {
"error": "SMITHERY_TOKEN not found",
"results": [],
"total": 0
}
# Prepare headers and query parameters
headers = {
'Authorization': f'Bearer {SMITHERY_TOKEN}'
}
# Add filters for deployed and verified servers
search_query = f"{query} is:deployed"
params = {
'q': search_query,
'page': 1,
'pageSize': 100 # Get maximum results
}
# Make API request
response = requests.get(
'https://registry.smithery.ai/servers',
headers=headers,
params=params
)
if response.status_code != 200:
return {
"error": f"Smithery API error: {response.status_code}",
"results": [],
"total": 0
}
# Parse response
data = response.json()
results = []
# Sort servers by useCount and take top results up to limit
servers = sorted(data.get('servers', []), key=lambda x: x.get('useCount', 0), reverse=True)[:limit]
for server in servers:
server_id = server.get('qualifiedName')
# Extract server ID without @author/ prefix for configuration
config_server_id = server_id.split('/')[-1] if '/' in server_id else server_id
# Create configuration based on OS type
if os_type == "Mac/Linux":
configuration = {
f"{config_server_id}": {
"command": "npx",
"args": [
"-y",
"@smithery/cli@latest",
"run",
f"{server_id}",
"--key",
"YOUR_SMITHERY_KEY"
]
}
}
elif os_type == "Windows":
configuration = {
f"{config_server_id}": {
"command": "cmd",
"args": [
"/c",
"npx",
"-y",
"@smithery/cli@latest",
"run",
f"{server_id}",
"--key",
"YOUR_SMITHERY_KEY"
]
}
}
elif os_type == "WSL":
configuration = {
f"{config_server_id}": {
"command": "wsl",
"args": [
"npx",
"-y",
"@smithery/cli@latest",
"run",
f"{server_id}",
"--key",
"YOUR_SMITHERY_KEY"
]
}
}
server_info = {
"id": server_id,
"name": server.get('displayName'),
"description": server.get('description'),
"likes": server.get('useCount', 0),
"source": "smithery",
"configuration": configuration
}
results.append(server_info)
return {
"results": results,
"total": len(results)
}
except Exception as e:
return {
"error": str(e),
"results": [],
"total": 0
}
def keyword_search(query: str, sources: List[str], limit: int = 3, os_type: str = "Mac/Linux") -> Dict:
"""
Search for MCPs using keyword matching.
Args:
query: Keyword search query
sources: List of sources to search from ('huggingface', 'smithery')
limit: Maximum number of results to return (default: 3)
os_type: Operating system type ("Mac/Linux", "Windows", "WSL")
Returns:
Dictionary containing combined search results
"""
all_results = []
if "huggingface" in sources:
hf_results = keyword_search_hf_spaces(query, limit)
all_results.extend(hf_results.get("results", []))
if "smithery" in sources:
smithery_results = keyword_search_smithery(query, limit, os_type)
all_results.extend(smithery_results.get("results", []))
return {
"results": all_results,
"total": len(all_results),
"search_type": "keyword"
}
def semantic_search_hf_spaces(query: str = "", limit: int = 3) -> Dict:
"""
Search for MCPs in Hugging Face Spaces using semantic embedding matching.
Args:
query: Natural language search query
limit: Maximum number of results to return (default: 3)
Returns:
Dictionary containing search results with MCP information
"""
try:
pinecone_api_key = os.getenv('PINECONE_API_KEY')
openai_api_key = os.getenv('OPENAI_API_KEY')
if not pinecone_api_key or not openai_api_key:
return {
"error": "API keys not found",
"results": [],
"total": 0
}
pc = Pinecone(api_key=pinecone_api_key)
index = pc.Index("hf-mcp")
client = OpenAI(api_key=openai_api_key)
response = client.embeddings.create(
input=query,
model="text-embedding-3-large"
)
query_embedding = response.data[0].embedding
results = index.query(
namespace="",
vector=query_embedding,
top_k=limit
)
space_results = []
if not results.matches:
return {
"results": [],
"total": 0
}
for match in results.matches:
space_id = match.id
try:
repo_id = space_id.replace('spaces/', '')
space = api.space_info(repo_id)
# Convert space ID to URL format - replace all special chars with hyphens
space_id_lower = re.sub(r'[^a-z0-9]', '-', space.id.lower())
# Remove consecutive hyphens
space_id_lower = re.sub(r'-+', '-', space_id_lower)
# Remove leading and trailing hyphens
space_id_lower = space_id_lower.strip('-')
sse_url = f"https://{space_id_lower}.hf.space/gradio_api/mcp/sse"
space_info = {
"id": space.id,
"likes": space.likes,
"trending_score": space.trending_score,
"source": "huggingface",
"score": match.score,
"configuration": {
"mcpServers": {
"gradio": {
"command": "npx",
"args": [
"mcp-remote",
sse_url,
"--transport",
"sse-only"
]
}
}
}
}
space_results.append(space_info)
except Exception as e:
continue
return {
"results": space_results,
"total": len(space_results)
}
except Exception as e:
return {
"error": str(e),
"results": [],
"total": 0
}
def semantic_search_smithery(query: str = "", limit: int = 3, os_type: str = "Mac/Linux") -> Dict:
"""
Search for MCPs in Smithery Registry using semantic embedding matching.
Args:
query: Natural language search query
limit: Maximum number of results to return (default: 3)
os_type: Operating system type ("Mac/Linux", "Windows", "WSL")
Returns:
Dictionary containing search results with MCP information
"""
try:
from pinecone import Pinecone
from openai import OpenAI
import os
pinecone_api_key = os.getenv('PINECONE_API_KEY')
openai_api_key = os.getenv('OPENAI_API_KEY')
smithery_token = os.getenv('SMITHERY_TOKEN')
if not pinecone_api_key or not openai_api_key or not smithery_token:
return {
"error": "API keys not found",
"results": [],
"total": 0
}
pc = Pinecone(api_key=pinecone_api_key)
index = pc.Index("smithery-mcp")
client = OpenAI(api_key=openai_api_key)
response = client.embeddings.create(
input=query,
model="text-embedding-3-large"
)
query_embedding = response.data[0].embedding
results = index.query(
namespace="",
vector=query_embedding,
top_k=limit
)
server_results = []
if not results.matches:
return {
"results": [],
"total": 0
}
headers = {
'Authorization': f'Bearer {smithery_token}'
}
for match in results.matches:
server_id = match.id
try:
response = requests.get(
f'https://registry.smithery.ai/servers/{server_id}',
headers=headers
)
if response.status_code != 200:
continue
server = response.json()
# Extract server ID without @author/ prefix for configuration
config_server_id = server_id.split('/')[-1] if '/' in server_id else server_id
# Create configuration based on OS type
if os_type == "Mac/Linux":
configuration = {
f"{config_server_id}": {
"command": "npx",
"args": [
"-y",
"@smithery/cli@latest",
"run",
f"{server_id}",
"--key",
"YOUR_SMITHERY_KEY"
]
}
}
elif os_type == "Windows":
configuration = {
f"{config_server_id}": {
"command": "cmd",
"args": [
"/c",
"npx",
"-y",
"@smithery/cli@latest",
"run",
f"{server_id}",
"--key",
"YOUR_SMITHERY_KEY"
]
}
}
elif os_type == "WSL":
configuration = {
f"{config_server_id}": {
"command": "wsl",
"args": [
"npx",
"-y",
"@smithery/cli@latest",
"run",
f"{server_id}",
"--key",
"YOUR_SMITHERY_KEY"
]
}
}
server_info = {
"id": server_id,
"name": server.get('displayName'),
"description": server.get('description'),
"likes": server.get('useCount', 0),
"source": "smithery",
"score": match.score,
"configuration": configuration
}
server_results.append(server_info)
except Exception as e:
continue
return {
"results": server_results,
"total": len(server_results)
}
except Exception as e:
return {
"error": str(e),
"results": [],
"total": 0
}
def semantic_search(query: str, sources: List[str], limit: int = 3, os_type: str = "Mac/Linux") -> Dict:
"""
Search for MCPs using semantic embedding matching.
Args:
query: Natural language search query
sources: List of sources to search from ('huggingface', 'smithery')
limit: Maximum number of results to return (default: 3)
os_type: Operating system type ("Mac/Linux", "Windows", "WSL")
Returns:
Dictionary containing combined search results
"""
all_results = []
if "huggingface" in sources:
try:
hf_results = semantic_search_hf_spaces(query, limit)
all_results.extend(hf_results.get("results", []))
except Exception as e:
# Fallback to keyword search if vector search fails
hf_results = keyword_search_hf_spaces(query, limit)
all_results.extend(hf_results.get("results", []))
if "smithery" in sources:
try:
smithery_results = semantic_search_smithery(query, limit, os_type)
all_results.extend(smithery_results.get("results", []))
except Exception as e:
# Fallback to keyword search if vector search fails
smithery_results = keyword_search_smithery(query, limit, os_type)
all_results.extend(smithery_results.get("results", []))
return {
"results": all_results,
"total": len(all_results),
"search_type": "semantic"
}
# Create the Gradio interface
with gr.Blocks(title="π¦ Router MCP", css="""
/* Make JSON output expanded by default */
.json-viewer-container {
display: block !important;
}
.json-viewer-container > .json-viewer-header {
display: none !important;
}
.json-viewer-container > .json-viewer-content {
display: block !important;
max-height: none !important;
}
.json-viewer-container .json-viewer-item {
display: block !important;
}
.json-viewer-container .json-viewer-item > .json-viewer-header {
display: none !important;
}
.json-viewer-container .json-viewer-item > .json-viewer-content {
display: block !important;
max-height: none !important;
}
/* Additional selectors for nested items */
.json-viewer-container .json-viewer-item .json-viewer-item {
display: block !important;
}
.json-viewer-container .json-viewer-item .json-viewer-item > .json-viewer-header {
display: none !important;
}
.json-viewer-container .json-viewer-item .json-viewer-item > .json-viewer-content {
display: block !important;
max-height: none !important;
}
/* Title styling */
.title-container {
text-align: center;
margin: 0.5rem 0;
position: relative;
padding: 0.5rem 0;
overflow: hidden;
}
.title-container h1 {
display: inline-block;
position: relative;
z-index: 1;
font-size: 1.8rem;
margin: 0;
line-height: 1.2;
color: var(--body-text-color);
}
.title-container p {
position: relative;
z-index: 1;
font-size: 1rem;
margin: 0.5rem 0 0 0;
color: var(--body-text-color);
opacity: 0.8;
}
.traffic-light {
position: absolute;
top: 50%;
left: 50%;
transform: translate(-50%, -50%);
width: 500px;
height: 40px;
background: linear-gradient(90deg,
rgba(255, 0, 0, 0.2) 0%,
rgba(255, 165, 0, 0.2) 50%,
rgba(0, 255, 0, 0.2) 100%
);
border-radius: 20px;
z-index: 0;
filter: blur(20px);
}
""") as demo:
with gr.Column(elem_classes=["title-container"]):
gr.HTML('''
<div class="traffic-light"></div>
<h1>π¦ Router MCP</h1>
<p>Your Gateway to Optimal MCP Servers in Seconds</p>
''')
with gr.Tabs() as tabs:
with gr.Tab("Overview"):
gr.Markdown("""
<span style="font-size: 1.15em"> Router MCP is a powerful tool that helps you discover and connect to MCP servers.
Whether you're looking for specific functionality or exploring new possibilities,
Router MCP makes it easy to find the perfect MCP server for your needs.</span>
""")
gr.Markdown("""
## π₯ Video Demo
""")
with gr.Row():
with gr.Column():
gr.Video(
value="demo.mp4",
label="Router MCP Demo Video",
interactive=False,
width=640
)
with gr.Column():
pass
with gr.Row():
with gr.Column():
gr.Markdown("""
## π― How to Use Router MCP
1. **Enter Your Query**
- Type a natural language description of the MCP Server you're looking for
- Be as specific or general as you need
2. **Select Search Sources**
- Choose where to search for MCP Servers
- Currently supports Hugging Face Spaces and Smithery
- Note: Anthropic's Registry is under development and not yet available
3. **Choose Your OS**
- Select your operating system (Mac/Linux, Windows, or WSL)
- This ensures you get the correct configuration format for your system
4. **Choose Search Type**
- **Keyword Search**: Use when you have specific terms or names in mind
- **Semantic Search**: Use when you want to find servers based on meaning and intent
- Both methods will return ready-to-use MCP configurations
""")
with gr.Column():
gr.Markdown("""
## π Understanding Search Results
The search results will show MCP Servers from different sources, each with their own format:
#### Hugging Face Spaces Results
- **id**: The Space's unique identifier
- **likes**: Number of likes the Space has received
- **trending_score**: The Space's popularity score
- **source**: Always "huggingface"
- **configuration**: Ready-to-use MCP configuration for SSE connection
#### Smithery Results
- **id**: The server's qualified name (e.g., "author/server-name")
- **name**: Display name of the server
- **description**: Detailed description of the server's capabilities
- **likes**: Number of times the server has been used
- **source**: Always "smithery"
- **configuration**: OS-specific MCP configuration (requires your Smithery key)
> Note: For Smithery servers, you'll need to replace "YOUR_SMITHERY_KEY" in the configuration with your actual Smithery API key.
> Note: When using Semantic Search, each result includes a similarity score (0-1) that indicates how well the server matches your query's meaning. Higher scores (closer to 1) indicate better semantic matches.
""")
gr.Markdown("""
## π Upcoming Features
We're constantly working to improve Router MCP. Here's what's coming soon:
""")
with gr.Row():
with gr.Column():
gr.Markdown("""
#### π Enhanced Integration
- Integration with Anthropic's Registry for comprehensive MCP server discovery
- Complete support for Smithery search capabilities
- Enhanced server discovery with improved filtering and sorting options
""")
with gr.Column():
gr.Markdown("""
#### β‘οΈ Automated Setup
- One-click MCP server addition to your client
- Automatic configuration generation and validation
- Seamless integration with popular MCP clients
""")
with gr.Tab("Try Router MCP"):
with gr.Row():
with gr.Column():
gr.Markdown("### Search MCP servers using natural language query")
query_input = gr.Textbox(
label="Describe the MCP Server you're looking for",
placeholder="e.g., 'I need an MCP Server that can generate images'"
)
gr.Markdown("### Select sources to search")
hf_checkbox = gr.Checkbox(label="Hugging Face Spaces", value=True)
smithery_checkbox = gr.Checkbox(label="Smithery", value=False)
registry_checkbox = gr.Checkbox(label="Registry (Coming Soon)", value=False, interactive=False)
result_limit = gr.Number(
label="Maximum number of results for each source",
value=3,
minimum=1,
maximum=20,
step=1
)
gr.Markdown("### Select your OS")
client_radio = gr.Radio(
choices=["Mac/Linux", "Windows", "WSL"],
label="Choose your operating system to get the appropriate command format",
value="Mac/Linux",
interactive=True,
elem_id="client_radio"
)
with gr.Row():
keyword_search_button = gr.Button("Keyword Search")
semantic_search_button = gr.Button("Semantic Search")
with gr.Column():
results_output = gr.JSON(
label="Search Results",
elem_id="results_output"
)
with gr.Tab("How to Integrate"):
gr.Markdown("""
## Integration Guide
To integrate Router MCP with your preferred client, follow these instructions:
### For SSE-Supported Clients
For clients that support SSE (e.g., Cursor, Windsurf, Cline), add this configuration to your MCP config:
```json
{
"mcpServers": {
"gradio": {
"url": "https://agents-mcp-hackathon-router-mcp.hf.space/gradio_api/mcp/sse"
}
}
}
```
### For stdio-Only Clients
For clients that only support stdio (e.g., Claude Desktop):
1. First, install Node.js
2. Add this configuration to your MCP config:
```json
{
"mcpServers": {
"gradio": {
"command": "npx",
"args": [
"mcp-remote",
"https://agents-mcp-hackathon-router-mcp.hf.space/gradio_api/mcp/sse",
"--transport",
"sse-only"
]
}
}
}
```
For more information about MCP, check out the [Gradio documentation](https://gradio.app/docs/mcp).
""")
# Set up event handlers
def get_sources():
return ["huggingface" if hf_checkbox.value else "", "smithery" if smithery_checkbox.value else ""]
def handle_keyword_mcp_search(query: str, hf: bool, sm: bool, limit: int, os_type: str) -> Dict:
"""
Handle keyword-based search for MCP servers across selected sources. If the client (such as Cursor or Claude) encounters a task it cannot handle, it can use MCP to search for other tools that can.
Use this search when you know the specific name or keywords of the MCP Server you're looking for.
Args:
query (str): The search query string to find matching MCP servers
hf (bool): Whether to include Hugging Face Spaces in the search
sm (bool): Whether to include Smithery in the search
limit (int): Maximum number of results to return per source
os_type (str): Operating system type ("Mac/Linux", "Windows", "WSL")
Returns:
Dict: A dictionary containing the search results with the following keys:
- results: List of found MCP servers with their configurations. Each configuration can be added to the MCP Client's config file to register the server.
- total: Total number of results
- search_type: Type of search performed ("keyword")
"""
return keyword_search(
query,
["huggingface" if hf else "", "smithery" if sm else ""],
int(limit),
os_type
)
def handle_semantic_mcp_search(query: str, hf: bool, sm: bool, limit: int, os_type: str) -> Dict:
"""
Handle semantic embedding-based search for MCP servers across selected sources. If the client (such as Cursor or Claude) encounters a task it cannot handle, it can use MCP to search for other tools that can.
Use this search when your query is more abstract or conceptual, as it can understand the meaning and context of your request.
Args:
query (str): The natural language search query to find semantically similar MCP servers
hf (bool): Whether to include Hugging Face Spaces in the search
sm (bool): Whether to include Smithery in the search
limit (int): Maximum number of results to return per source
os_type (str): Operating system type ("Mac/Linux", "Windows", "WSL")
Returns:
Dict: A dictionary containing the search results with the following keys:
- results: List of found MCP servers with their configurations and similarity scores. Each configuration can be added to the MCP Client's config file to register the server.
- total: Total number of results
- search_type: Type of search performed ("semantic")
"""
return semantic_search(
query,
["huggingface" if hf else "", "smithery" if sm else ""],
int(limit),
os_type
)
keyword_search_button.click(
fn=handle_keyword_mcp_search,
inputs=[query_input, hf_checkbox, smithery_checkbox, result_limit, client_radio],
outputs=results_output
)
semantic_search_button.click(
fn=handle_semantic_mcp_search,
inputs=[query_input, hf_checkbox, smithery_checkbox, result_limit, client_radio],
outputs=results_output
)
# query_input.submit(
# fn=handle_embedding_search,
# inputs=[query_input, hf_checkbox, smithery_checkbox, result_limit],
# outputs=results_output
# )
if __name__ == "__main__":
demo.launch(mcp_server=True) |