File size: 7,070 Bytes
4b88321 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 |
# modal_app.py - Modal deployment for ResearchCopilot
import modal
import os
from pathlib import Path
# Create Modal app
app = modal.App("research-copilot")
# Define the environment with required packages
image = modal.Image.debian_slim(python_version="3.11").pip_install([
"gradio>=4.0.0",
"httpx",
"aiohttp",
"python-dotenv",
"requests",
"beautifulsoup4",
"openai", # For potential LLM integrations
"anthropic", # For Claude integration
])
# Mount the application code
code_mount = modal.Mount.from_local_dir(
".",
remote_path="/app",
condition=lambda path: path.suffix in [".py", ".txt", ".md"]
)
@app.function(
image=image,
mounts=[code_mount],
allow_concurrent_inputs=100,
timeout=3600, # 1 hour timeout for long research tasks
secrets=[
modal.Secret.from_name("research-copilot-secrets"), # API keys
]
)
@modal.web_server(port=7860, startup_timeout=60)
def run_gradio_app():
"""Run the ResearchCopilot Gradio application"""
import sys
sys.path.append("/app")
# Import and run the main application
from ResearchCopilot.research_copilot import create_interface
app = create_interface()
app.launch(
server_name="0.0.0.0",
server_port=7860,
share=False, # Modal handles the sharing
show_error=True,
enable_queue=True
)
# Enhanced retriever with real API integrations
@app.function(
image=image,
secrets=[modal.Secret.from_name("research-copilot-secrets")],
timeout=300
)
async def search_perplexity(query: str, num_results: int = 5):
"""Search using Perplexity API"""
import httpx
import os
api_key = os.getenv("PERPLEXITY_API_KEY")
if not api_key:
# Return mock data if no API key
return {
"results": [
{
"title": f"Mock Result for: {query}",
"url": "https://example.com/mock",
"snippet": f"This is a mock result for the query: {query}",
"source_type": "web"
}
]
}
async with httpx.AsyncClient() as client:
try:
response = await client.post(
"https://api.perplexity.ai/chat/completions",
headers={
"Authorization": f"Bearer {api_key}",
"Content-Type": "application/json"
},
json={
"model": "llama-3.1-sonar-small-128k-online",
"messages": [
{"role": "user", "content": f"Search for: {query}"}
],
"max_tokens": 1000,
"temperature": 0.2,
"return_citations": True
}
)
if response.status_code == 200:
data = response.json()
return {"results": data.get("choices", [{}])[0].get("message", {}).get("content", "")}
else:
return {"error": f"API error: {response.status_code}"}
except Exception as e:
return {"error": str(e)}
@app.function(
image=image,
secrets=[modal.Secret.from_name("research-copilot-secrets")],
timeout=300
)
async def search_google(query: str, num_results: int = 10):
"""Search using Google Custom Search API"""
import httpx
import os
api_key = os.getenv("GOOGLE_API_KEY")
search_engine_id = os.getenv("GOOGLE_SEARCH_ENGINE_ID")
if not api_key or not search_engine_id:
# Return mock data if no API keys
return {
"results": [
{
"title": f"Google Search: {query}",
"url": "https://example.com/google-mock",
"snippet": f"Mock Google search result for: {query}",
"source_type": "web"
}
]
}
async with httpx.AsyncClient() as client:
try:
response = await client.get(
"https://www.googleapis.com/customsearch/v1",
params={
"key": api_key,
"cx": search_engine_id,
"q": query,
"num": min(num_results, 10)
}
)
if response.status_code == 200:
data = response.json()
results = []
for item in data.get("items", []):
results.append({
"title": item.get("title", ""),
"url": item.get("link", ""),
"snippet": item.get("snippet", ""),
"source_type": "web"
})
return {"results": results}
else:
return {"error": f"Google API error: {response.status_code}"}
except Exception as e:
return {"error": str(e)}
@app.function(
image=image,
secrets=[modal.Secret.from_name("research-copilot-secrets")],
timeout=600
)
async def summarize_with_claude(content: str, context: str = ""):
"""Summarize content using Claude API"""
import httpx
import os
api_key = os.getenv("ANTHROPIC_API_KEY")
if not api_key:
# Return mock summary if no API key
return {
"summary": f"Mock summary of content: {content[:100]}...",
"key_points": ["Point 1", "Point 2", "Point 3"]
}
async with httpx.AsyncClient() as client:
try:
response = await client.post(
"https://api.anthropic.com/v1/messages",
headers={
"x-api-key": api_key,
"Content-Type": "application/json",
"anthropic-version": "2023-06-01"
},
json={
"model": "claude-3-sonnet-20240229",
"max_tokens": 1000,
"messages": [
{
"role": "user",
"content": f"Summarize this content and extract key points:\n\nContext: {context}\n\nContent: {content}"
}
]
}
)
if response.status_code == 200:
data = response.json()
content_text = data.get("content", [{}])[0].get("text", "")
return {
"summary": content_text,
"key_points": ["AI-generated summary", "Professional analysis", "Comprehensive overview"]
}
else:
return {"error": f"Claude API error: {response.status_code}"}
except Exception as e:
return {"error": str(e)}
if __name__ == "__main__":
# For local development
import subprocess
subprocess.run(["python", "research_copilot.py"]) |