File size: 35,468 Bytes
4b88321 8777e66 4b88321 318fcdf 4b88321 8777e66 4b88321 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 |
# ResearchCopilot - Multi-Agent Research System
# Track 3: Agentic Demo Showcase - Gradio MCP Hackathon 2025
import gradio as gr
import asyncio
import json
import time
import os
from datetime import datetime
from typing import Dict, List, Optional, Tuple
from dataclasses import dataclass, asdict
from enum import Enum
import logging
import re
from abc import ABC, abstractmethod
# Load environment variables from .env file
# try:
# from dotenv import load_dotenv
# load_dotenv()
# print("β
Environment variables loaded from .env file")
# except ImportError:
# print("β οΈ python-dotenv not installed. Install with: pip install python-dotenv")
# except Exception as e:
# print(f"β οΈ Could not load .env file: {e}")
# Import enhanced agents with real API integrations
try:
from enhanced_agents import EnhancedRetrieverAgent, EnhancedSummarizerAgent, EnhancedCitationAgent, SearchResult
ENHANCED_AGENTS_AVAILABLE = True
print("β
Enhanced agents loaded successfully")
except ImportError:
print("β Enhanced agents not found - using basic agents with mock data")
ENHANCED_AGENTS_AVAILABLE = False
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Debug: Check if API keys are loaded
print("\nπ API Key Status:")
print(f"Perplexity API: {'β
Loaded' if os.getenv('PERPLEXITY_API_KEY') else 'β Missing'}")
print(f"Google API: {'β
Loaded' if os.getenv('GOOGLE_API_KEY') else 'β Missing'}")
print(f"Google Search ID: {'β
Loaded' if os.getenv('GOOGLE_SEARCH_ENGINE_ID') else 'β Missing'}")
print(f"Claude API: {'β
Loaded' if os.getenv('ANTHROPIC_API_KEY') else 'β Missing'}")
print(f"OpenAI API: {'β
Loaded (fallback)' if os.getenv('OPENAI_API_KEY') else 'β Missing'}")
print("=" * 50)
class AgentStatus(Enum):
IDLE = "idle"
THINKING = "thinking"
WORKING = "working"
COMPLETED = "completed"
ERROR = "error"
@dataclass
class ResearchTask:
id: str
description: str
priority: int
dependencies: List[str]
status: str = "pending"
results: Optional[Dict] = None
created_at: str = None
def __post_init__(self):
if self.created_at is None:
self.created_at = datetime.now().isoformat()
@dataclass
class AgentMessage:
agent_id: str
message: str
timestamp: str
status: AgentStatus
data: Optional[Dict] = None
class BaseAgent(ABC):
def __init__(self, agent_id: str, name: str):
self.agent_id = agent_id
self.name = name
self.status = AgentStatus.IDLE
self.messages = []
def log_message(self, message: str, data: Optional[Dict] = None):
msg = AgentMessage(
agent_id=self.agent_id,
message=message,
timestamp=datetime.now().isoformat(),
status=self.status,
data=data
)
self.messages.append(msg)
logger.info(f"[{self.name}] {message}")
return msg
@abstractmethod
async def process(self, input_data: Dict) -> Dict:
pass
class PlannerAgent(BaseAgent):
def __init__(self):
super().__init__("planner", "Research Planner")
async def process(self, input_data: Dict) -> Dict:
self.status = AgentStatus.THINKING
query = input_data.get("query", "")
self.log_message(f"Analyzing research query: {query}")
await asyncio.sleep(1) # Simulate thinking time
self.status = AgentStatus.WORKING
# Simulate intelligent task breakdown
tasks = self._create_research_plan(query)
self.log_message(f"Created research plan with {len(tasks)} tasks")
self.status = AgentStatus.COMPLETED
return {
"tasks": tasks,
"strategy": self._generate_strategy(query),
"estimated_time": len(tasks) * 2,
"complexity": self._assess_complexity(query)
}
def _create_research_plan(self, query: str) -> List[ResearchTask]:
# Intelligent task decomposition based on query analysis
tasks = []
# Core research task
tasks.append(ResearchTask(
id="core_search",
description=f"Primary research on: {query}",
priority=1,
dependencies=[]
))
# If query mentions specific domains, add specialized searches
if any(term in query.lower() for term in ["academic", "paper", "study", "research"]):
tasks.append(ResearchTask(
id="academic_search",
description="Search academic databases and papers",
priority=2,
dependencies=["core_search"]
))
# If query is about recent events, add news search
if any(term in query.lower() for term in ["recent", "latest", "current", "2024", "2025"]):
tasks.append(ResearchTask(
id="news_search",
description="Search for recent news and updates",
priority=2,
dependencies=["core_search"]
))
# Always add background context
tasks.append(ResearchTask(
id="context_search",
description="Gather background context and definitions",
priority=3,
dependencies=["core_search"]
))
return tasks
def _generate_strategy(self, query: str) -> str:
if len(query.split()) < 5:
return "Focused search strategy for specific topic"
elif any(word in query.lower() for word in ["compare", "vs", "versus", "difference"]):
return "Comparative analysis strategy"
elif "how" in query.lower():
return "Process-oriented research strategy"
else:
return "Comprehensive exploratory strategy"
def _assess_complexity(self, query: str) -> str:
word_count = len(query.split())
if word_count < 5:
return "Low"
elif word_count < 10:
return "Medium"
else:
return "High"
class RetrieverAgent(BaseAgent):
def __init__(self):
super().__init__("retriever", "Information Retriever")
self.search_apis = ["perplexity", "google", "academic"]
# Use enhanced agent if available
if ENHANCED_AGENTS_AVAILABLE:
self.enhanced_agent = None
async def process(self, input_data: Dict) -> Dict:
self.status = AgentStatus.THINKING
task = input_data.get("task")
self.log_message(f"Processing retrieval task: {task.description}")
self.status = AgentStatus.WORKING
# Use enhanced agents with real APIs if available
if ENHANCED_AGENTS_AVAILABLE:
try:
async with EnhancedRetrieverAgent() as enhanced_retriever:
# Try real API search first
if "academic" in task.id:
sources = await enhanced_retriever.search_academic(task.description, 5)
elif "news" in task.id:
sources = await enhanced_retriever.search_google(f"recent news {task.description}", 5)
else:
# Use Perplexity for main searches
sources = await enhanced_retriever.search_perplexity(task.description, 5)
if not sources: # Fallback to Google
sources = await enhanced_retriever.search_google(task.description, 5)
if sources:
self.log_message(f"Retrieved {len(sources)} sources using real APIs")
self.status = AgentStatus.COMPLETED
# Convert SearchResult objects to dict format
results = []
for source in sources:
results.append({
"title": source.title,
"url": source.url,
"snippet": source.snippet,
"source_type": source.source_type,
"relevance": source.relevance
})
return {
"sources": results,
"search_strategy": self._get_search_strategy(task),
"confidence": self._calculate_confidence(results)
}
except Exception as e:
self.log_message(f"API search failed, using mock data: {str(e)}")
# Fallback to mock data
results = await self._perform_searches(task)
self.log_message(f"Retrieved {len(results)} sources (mock data)")
self.status = AgentStatus.COMPLETED
return {
"sources": results,
"search_strategy": self._get_search_strategy(task),
"confidence": self._calculate_confidence(results)
}
async def _perform_searches(self, task: ResearchTask) -> List[Dict]:
# Simulate different search strategies based on task type
await asyncio.sleep(2) # Simulate API call time
# Mock search results with realistic structure
results = []
if "academic" in task.id:
results.extend([
{
"title": "Academic Paper on Topic",
"url": "https://arxiv.org/paper/123",
"snippet": "Comprehensive study showing key findings...",
"source_type": "academic",
"relevance": 0.95
},
{
"title": "Research Publication",
"url": "https://journals.example.com/article/456",
"snippet": "Peer-reviewed research demonstrating...",
"source_type": "academic",
"relevance": 0.88
}
])
if "news" in task.id:
results.extend([
{
"title": "Recent Development in Field",
"url": "https://news.example.com/article/789",
"snippet": "Latest updates show significant progress...",
"source_type": "news",
"relevance": 0.82
}
])
# Always add some general results
results.extend([
{
"title": "Comprehensive Overview",
"url": "https://example.com/overview",
"snippet": "Detailed analysis covering multiple aspects...",
"source_type": "general",
"relevance": 0.79
},
{
"title": "Expert Analysis",
"url": "https://expert.example.com/analysis",
"snippet": "Professional insights and recommendations...",
"source_type": "expert",
"relevance": 0.85
}
])
return results
def _get_search_strategy(self, task: ResearchTask) -> str:
if "academic" in task.id:
return "Academic database search with peer-review filter"
elif "news" in task.id:
return "Recent news aggregation with date filtering"
else:
return "Multi-source comprehensive search"
def _calculate_confidence(self, results: List[Dict]) -> float:
if not results:
return 0.0
avg_relevance = sum(r.get("relevance", 0) for r in results) / len(results)
source_diversity = len(set(r.get("source_type") for r in results))
return min(1.0, avg_relevance * 0.7 + (source_diversity / 5) * 0.3)
class SummarizerAgent(BaseAgent):
def __init__(self):
super().__init__("summarizer", "Content Summarizer")
async def process(self, input_data: Dict) -> Dict:
self.status = AgentStatus.THINKING
sources = input_data.get("sources", [])
self.log_message(f"Summarizing {len(sources)} sources")
self.status = AgentStatus.WORKING
# Use enhanced agents with real APIs if available
if ENHANCED_AGENTS_AVAILABLE:
try:
# Create enhanced summarizer (no async context manager needed)
enhanced_summarizer = EnhancedSummarizerAgent()
# Convert dict sources to SearchResult objects
search_results = []
for source in sources:
search_results.append(SearchResult(
title=source.get("title", ""),
url=source.get("url", ""),
snippet=source.get("snippet", ""),
source_type=source.get("source_type", "web"),
relevance=source.get("relevance", 0.5)
))
# Use synchronous call (KarmaCheck style)
summary_result = enhanced_summarizer.summarize_with_claude(
search_results,
"Research query analysis"
)
if summary_result and "summary" in summary_result:
# Get the actual API used from the result
api_used = summary_result.get("api_used", "AI API")
self.log_message(f"Summary generated using {api_used}")
self.status = AgentStatus.COMPLETED
return summary_result
except Exception as e:
self.log_message(f"API summarization failed, using mock summary: {str(e)}")
# Fallback to mock summary
await asyncio.sleep(2) # Simulate processing time
summary = self._generate_summary(sources)
key_points = self._extract_key_points(sources)
self.log_message("Summary generation completed (mock data)")
self.status = AgentStatus.COMPLETED
return {
"summary": summary,
"key_points": key_points,
"word_count": len(summary.split()),
"coverage_score": self._calculate_coverage(sources)
}
def _generate_summary(self, sources: List[Dict]) -> str:
# Simulate intelligent summarization
if not sources:
return "No sources available for summarization."
summary_parts = []
# Group sources by type
academic_sources = [s for s in sources if s.get("source_type") == "academic"]
news_sources = [s for s in sources if s.get("source_type") == "news"]
general_sources = [s for s in sources if s.get("source_type") == "general"]
if academic_sources:
summary_parts.append(
"Academic research indicates significant developments in this field. "
"Peer-reviewed studies demonstrate consistent findings across multiple "
"research groups, with high confidence in the methodological approaches used."
)
if news_sources:
summary_parts.append(
"Recent developments show ongoing progress and public interest. "
"Current trends suggest continued evolution in this area with "
"practical implications for stakeholders."
)
if general_sources:
summary_parts.append(
"Comprehensive analysis reveals multiple perspectives and approaches. "
"Expert opinions converge on key principles while acknowledging "
"areas that require further investigation."
)
return " ".join(summary_parts)
def _extract_key_points(self, sources: List[Dict]) -> List[str]:
key_points = []
if any(s.get("source_type") == "academic" for s in sources):
key_points.append("Peer-reviewed research supports main conclusions")
if any(s.get("relevance", 0) > 0.9 for s in sources):
key_points.append("High-relevance sources identified")
if len(sources) > 3:
key_points.append("Multiple independent sources confirm findings")
key_points.extend([
"Cross-referenced information for accuracy",
"Balanced perspective from diverse sources",
"Current information reflects latest developments"
])
return key_points
def _calculate_coverage(self, sources: List[Dict]) -> float:
if not sources:
return 0.0
source_types = set(s.get("source_type") for s in sources)
high_relevance = sum(1 for s in sources if s.get("relevance", 0) > 0.8)
coverage = (len(source_types) / 4) * 0.5 + (high_relevance / len(sources)) * 0.5
return min(1.0, coverage)
class CitationAgent(BaseAgent):
def __init__(self):
super().__init__("citation", "Citation Generator")
async def process(self, input_data: Dict) -> Dict:
self.status = AgentStatus.THINKING
sources = input_data.get("sources", [])
self.log_message(f"Generating citations for {len(sources)} sources")
self.status = AgentStatus.WORKING
# Use enhanced citation agent if available
if ENHANCED_AGENTS_AVAILABLE:
try:
enhanced_citation = EnhancedCitationAgent()
# Convert dict sources to SearchResult objects
search_results = []
for source in sources:
search_results.append(SearchResult(
title=source.get("title", ""),
url=source.get("url", ""),
snippet=source.get("snippet", ""),
source_type=source.get("source_type", "web"),
relevance=source.get("relevance", 0.5)
))
citation_result = enhanced_citation.generate_citations(search_results)
if citation_result:
self.log_message("Citations generated with multiple formats")
self.status = AgentStatus.COMPLETED
return citation_result
except Exception as e:
self.log_message(f"Enhanced citation failed, using basic: {str(e)}")
# Fallback to basic citation
await asyncio.sleep(1) # Simulate processing time
citations = self._generate_citations(sources)
bibliography = self._create_bibliography(sources)
self.log_message("Citation generation completed")
self.status = AgentStatus.COMPLETED
return {
"citations": citations,
"bibliography": bibliography,
"citation_count": len(citations),
"formats": ["APA", "MLA", "Chicago"]
}
def _generate_citations(self, sources: List[Dict]) -> List[Dict]:
citations = []
for i, source in enumerate(sources, 1):
citation = {
"id": i,
"apa": self._format_apa(source),
"mla": self._format_mla(source),
"chicago": self._format_chicago(source),
"source": source
}
citations.append(citation)
return citations
def _format_apa(self, source: Dict) -> str:
title = source.get("title", "Unknown Title")
url = source.get("url", "")
return f"{title}. Retrieved from {url}"
def _format_mla(self, source: Dict) -> str:
title = source.get("title", "Unknown Title")
url = source.get("url", "")
return f'"{title}." Web. {datetime.now().strftime("%d %b %Y")}. <{url}>'
def _format_chicago(self, source: Dict) -> str:
title = source.get("title", "Unknown Title")
url = source.get("url", "")
return f'"{title}." Accessed {datetime.now().strftime("%B %d, %Y")}. {url}.'
def _create_bibliography(self, sources: List[Dict]) -> str:
if not sources:
return "No sources to cite."
bib_entries = []
for source in sources:
bib_entries.append(self._format_apa(source))
return "\n\n".join(bib_entries)
class ResearchOrchestrator:
def __init__(self):
self.planner = PlannerAgent()
self.retriever = RetrieverAgent()
self.summarizer = SummarizerAgent()
self.citation_gen = CitationAgent()
self.research_state = {}
self.activity_log = []
async def conduct_research(self, query: str, progress_callback=None) -> Dict:
"""Main research orchestration method"""
self.activity_log = []
self.research_state = {"query": query, "start_time": datetime.now().isoformat()}
try:
# Step 1: Planning
if progress_callback:
progress_callback("π― Planning research approach...", 10)
plan_result = await self.planner.process({"query": query})
self.research_state["plan"] = plan_result
self._log_activity("Planning completed", self.planner.messages[-1])
# Step 2: Information Retrieval
if progress_callback:
progress_callback("π Gathering information...", 30)
all_sources = []
tasks = plan_result["tasks"]
for i, task in enumerate(tasks):
if progress_callback:
progress_callback(f"π Processing: {task.description}", 30 + (i * 20))
retrieval_result = await self.retriever.process({"task": task})
all_sources.extend(retrieval_result["sources"])
self._log_activity(f"Retrieved sources for: {task.description}",
self.retriever.messages[-1])
self.research_state["sources"] = all_sources
# Step 3: Summarization
if progress_callback:
progress_callback("π Analyzing and summarizing...", 70)
summary_result = await self.summarizer.process({"sources": all_sources})
self.research_state["summary"] = summary_result
self._log_activity("Summarization completed", self.summarizer.messages[-1])
# Step 4: Citation Generation
if progress_callback:
progress_callback("π Generating citations...", 90)
citation_result = await self.citation_gen.process({"sources": all_sources})
self.research_state["citations"] = citation_result
self._log_activity("Citations generated", self.citation_gen.messages[-1])
if progress_callback:
progress_callback("β
Research completed!", 100)
self.research_state["completion_time"] = datetime.now().isoformat()
self.research_state["status"] = "completed"
return self.research_state
except Exception as e:
logger.error(f"Research failed: {str(e)}")
self.research_state["status"] = "error"
self.research_state["error"] = str(e)
return self.research_state
def _log_activity(self, description: str, agent_message: AgentMessage):
activity = {
"timestamp": datetime.now().isoformat(),
"description": description,
"agent": agent_message.agent_id,
"details": agent_message.message
}
self.activity_log.append(activity)
def get_activity_log(self) -> List[Dict]:
return self.activity_log
# Global orchestrator instance
orchestrator = ResearchOrchestrator()
def format_research_results(research_state: Dict) -> Tuple[str, str, str, str]:
"""Format research results for Gradio display"""
if research_state.get("status") == "error":
error_msg = f"β Research failed: {research_state.get('error', 'Unknown error')}"
return error_msg, "", "", ""
if research_state.get("status") != "completed":
return "Research in progress...", "", "", ""
# Format summary
summary_data = research_state.get("summary", {})
summary_text = f"""# Research Summary
{summary_data.get('summary', 'No summary available')}
## Key Findings
"""
for point in summary_data.get('key_points', []):
summary_text += f"β’ {point}\n"
summary_text += f"""
## Research Metrics
- Sources analyzed: {len(research_state.get('sources', []))}
- Summary length: {summary_data.get('word_count', 0)} words
- Coverage score: {summary_data.get('coverage_score', 0):.2f}
"""
# Format sources
sources = research_state.get("sources", [])
sources_text = "# Sources Found\n\n"
for i, source in enumerate(sources, 1):
sources_text += f"""## {i}. {source.get('title', 'Unknown Title')}
**URL:** {source.get('url', 'N/A')}
**Type:** {source.get('source_type', 'Unknown')}
**Relevance:** {source.get('relevance', 0):.2f}
**Summary:** {source.get('snippet', 'No summary available')}
---
"""
# Format citations
citations_data = research_state.get("citations", {})
citations_text = ""
# Check if we have citations data
if citations_data and isinstance(citations_data, dict):
bibliography = citations_data.get('bibliography')
if bibliography and bibliography.strip():
citations_text += bibliography
else:
# Fallback: create bibliography from sources if citations failed
sources = research_state.get("sources", [])
if sources:
citations_text += "## Sources Referenced:\n\n"
for i, source in enumerate(sources, 1):
title = source.get("title", "Unknown Title")
url = source.get("url", "")
source_type = source.get("source_type", "web")
citations_text += f"**[{i}]** {title} \n"
citations_text += f"*Source:* {source_type.title()} \n"
citations_text += f"*URL:* {url} \n\n"
else:
citations_text += "No sources available for citation."
else:
# Create citations from sources directly
sources = research_state.get("sources", [])
if sources:
citations_text += "## Research Sources:\n\n"
for i, source in enumerate(sources, 1):
title = source.get("title", "Unknown Title")
url = source.get("url", "")
source_type = source.get("source_type", "web")
relevance = source.get("relevance", 0)
citations_text += f"**{i}.** {title} \n"
citations_text += f"**Type:** {source_type.title()} | **Relevance:** {relevance:.2f} \n"
citations_text += f"**URL:** {url} \n\n"
else:
citations_text += "No sources available for citation."
# Format activity log
activity_text = "# Research Process Log\n\n"
for activity in orchestrator.get_activity_log():
timestamp = datetime.fromisoformat(activity['timestamp']).strftime("%H:%M:%S")
activity_text += f"**{timestamp}** - {activity['description']}\n"
activity_text += f"*{activity['details']}*\n\n"
return summary_text, sources_text, citations_text, activity_text
async def conduct_research_async(query: str, progress=gr.Progress()) -> Tuple[str, str, str, str]:
"""Async wrapper for research with progress updates"""
def update_progress(message: str, percent: int):
progress(percent/100, desc=message)
research_result = await orchestrator.conduct_research(query, update_progress)
return format_research_results(research_result)
def conduct_research_sync(query: str, progress=gr.Progress()) -> Tuple[str, str, str, str]:
"""Synchronous wrapper for Gradio"""
if not query.strip():
return "Please enter a research query.", "", "", ""
# Run async function in event loop
try:
loop = asyncio.get_event_loop()
except RuntimeError:
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
return loop.run_until_complete(conduct_research_async(query, progress))
def create_interface():
"""Create the Gradio interface"""
with gr.Blocks(
title="ResearchCopilot - Multi-Agent Research System",
theme=gr.themes.Soft(),
css="""
.gradio-container {
max-width: 1200px !important;
margin: 0 auto !important;
}
.research-header {
text-align: center;
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
color: white;
padding: 2rem;
border-radius: 10px;
margin-bottom: 2rem;
}
.agent-status {
background: #ffffff !important;
border: 2px solid #e0e0e0;
border-radius: 8px;
padding: 1.5rem;
margin: 1rem 0;
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
}
.agent-status h3 {
color: #2c3e50 !important;
margin-bottom: 1rem;
font-size: 1.2rem;
}
.agent-status ul {
color: #2c3e50 !important;
list-style-type: none;
padding-left: 0;
}
.agent-status li {
color: #2c3e50 !important;
margin-bottom: 0.8rem;
padding: 0.5rem;
background: #f8f9fa;
border-radius: 4px;
border-left: 4px solid #667eea;
}
.agent-status strong {
color: #667eea !important;
}
"""
) as interface:
# Header
gr.HTML("""
<div class="research-header">
<h1>π€ ResearchCopilot</h1>
<h2>Multi-Agent Research System</h2>
<p>Powered by AI agents working together to conduct comprehensive research</p>
<p><em>Track 3: Agentic Demo Showcase - Gradio MCP Hackathon 2025</em></p>
</div>
""")
# Agent Status Overview
with gr.Row():
gr.HTML("""
<div class="agent-status">
<h3>π― Research Agents</h3>
<ul>
<li><strong>Planner Agent:</strong> Breaks down research queries into structured tasks</li>
<li><strong>Retriever Agent:</strong> Searches multiple sources (Perplexity, Google, Academic)</li>
<li><strong>Summarizer Agent:</strong> Analyzes and synthesizes information</li>
<li><strong>Citation Agent:</strong> Generates proper academic citations</li>
</ul>
</div>
""")
# Main Interface
with gr.Row():
with gr.Column(scale=1):
query_input = gr.Textbox(
label="Research Query",
placeholder="Enter your research question (e.g., 'Latest developments in quantum computing for drug discovery')",
lines=3
)
research_btn = gr.Button(
"π Start Research",
variant="primary",
size="lg"
)
gr.Examples(
examples=[
"Impact of artificial intelligence on healthcare diagnostics",
"Sustainable energy solutions for urban environments",
"Recent advances in quantum computing applications",
"Climate change effects on global food security",
"Blockchain technology in supply chain management"
],
inputs=query_input,
label="Example Research Queries"
)
# Results Display
with gr.Row():
with gr.Column():
with gr.Tabs():
with gr.TabItem("π Summary"):
summary_output = gr.Markdown(
label="Research Summary",
value="Enter a research query and click 'Start Research' to begin."
)
with gr.TabItem("π Sources"):
sources_output = gr.Markdown(
label="Sources Found",
value="Sources will appear here after research is completed."
)
with gr.TabItem("π Citations"):
citations_output = gr.Markdown(
label="Citations & Bibliography",
value="Citations will be generated automatically."
)
with gr.TabItem("π Process Log"):
activity_output = gr.Markdown(
label="Agent Activity Log",
value="Research process will be logged here."
)
# Event Handlers
research_btn.click(
fn=conduct_research_sync,
inputs=[query_input],
outputs=[summary_output, sources_output, citations_output, activity_output],
show_progress=True
)
# Footer
gr.HTML("""
<div style="text-align: center; margin-top: 2rem; padding: 1.5rem; background: #ffffff; border: 2px solid #e0e0e0; border-radius: 8px; box-shadow: 0 2px 4px rgba(0,0,0,0.1);">
<p style="color: #2c3e50; font-weight: bold; margin-bottom: 0.5rem;">ResearchCopilot - Demonstrating multi-agent AI collaboration for research tasks</p>
<p style="color: #667eea; font-size: 0.9rem;">Built for the Gradio Agents & MCP Hackathon 2025 - Track 3: Agentic Demo Showcase</p>
<p style="color: #7f8c8d; font-size: 0.8rem; margin-top: 0.5rem;">Built with β€οΈ using Gradio, Modal, Perplexity API, Claude API, and Multi-Agent Architecture.</p>
</div>
""")
return interface
# Launch the application
if __name__ == "__main__":
app = create_interface()
app.launch(
share=False, # Creates public URL for sharing
server_name="0.0.0.0", # Localhost access
server_port=7860,
show_error=True,
inbrowser=True # Automatically opens browser
)
|