File size: 5,520 Bytes
4b88321 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 |
# π€ ResearchCopilot - Complete Project Structure
## π File Organization
```
research-copilot/
βββ π research_copilot.py # Main Gradio application with complete UI
βββ βοΈ modal_app.py # Modal deployment configuration
βββ π§ enhanced_agents.py # Production agents with real API integrations
βββ π requirements.txt # All Python dependencies
βββ π .env.example # Environment variables template
βββ π deploy.sh # Automated deployment script
βββ π README.md # Comprehensive documentation
βββ π Project_Structure.md # This file
```
## π― Key Components
### 1. Core Application (`research_copilot.py`)
- **Multi-Agent System**: 4 specialized agents working together
- **Gradio Interface**: Beautiful, responsive UI with real-time updates
- **Agent Orchestration**: Sophisticated workflow management
- **Progress Tracking**: Live updates during research process
- **Results Display**: Tabbed interface for different output types
### 2. Modal Deployment (`modal_app.py`)
- **Serverless Architecture**: Scalable cloud deployment
- **API Integrations**: Real Perplexity, Google, and Claude APIs
- **Secret Management**: Secure API key handling
- **Environment Setup**: Automated dependency management
### 3. Enhanced Agents (`enhanced_agents.py`)
- **Production-Ready**: Real API integrations with fallbacks
- **Error Handling**: Comprehensive error management
- **Mock Data**: Realistic demo data when APIs unavailable
- **Multiple Formats**: Citations in APA, MLA, Chicago, IEEE, Harvard
### 4. Deployment Tools
- **Automated Setup**: One-command deployment script
- **Environment Management**: Easy API key configuration
- **Monitoring**: Built-in logging and status tracking
## π Quick Start Guide
### Option 1: Local Development
```bash
git clone <your-repo>
cd research-copilot
pip install -r requirements.txt
cp .env.example .env
# Edit .env with your API keys
python research_copilot.py
```
### Option 2: Modal Deployment
```bash
chmod +x deploy.sh
./deploy.sh
# Follow the prompts for API keys
```
## π Hackathon Submission Checklist
- β
**Complete Multi-Agent System**: 4 specialized agents with real collaboration
- β
**Production-Ready Code**: Real API integrations and error handling
- β
**Beautiful UI**: Professional Gradio interface with progress tracking
- β
**Scalable Deployment**: Modal serverless architecture
- β
**Comprehensive Documentation**: Detailed README and setup guides
- β
**Demo-Ready**: Works with and without API keys (mock data)
- β
**Track 3 Focus**: Perfect showcase of agentic AI capabilities
## π¬ Demo Script
### 1. Introduction (30 seconds)
"Welcome to ResearchCopilot - a multi-agent AI system that demonstrates the power of collaborative AI agents working together to conduct comprehensive research."
### 2. Agent Overview (45 seconds)
"Our system features four specialized agents: the Planner breaks down queries, the Retriever searches multiple sources, the Summarizer analyzes information, and the Citation agent ensures academic rigor."
### 3. Live Demonstration (90 seconds)
- Enter query: "Latest developments in quantum computing for drug discovery"
- Show real-time agent activity
- Highlight agent collaboration and decision-making
- Display comprehensive results across all tabs
### 4. Technical Highlights (30 seconds)
"Built with Gradio for the interface, deployed on Modal for scalability, and featuring real API integrations with Perplexity, Google, and Claude."
### 5. Conclusion (15 seconds)
"ResearchCopilot represents the future of AI-powered research through intelligent agent collaboration."
## π Performance Metrics
### System Capabilities
- **Query Processing**: Natural language understanding
- **Source Diversity**: Academic, news, web, and expert sources
- **Citation Quality**: 5 academic formats (APA, MLA, Chicago, IEEE, Harvard)
- **Real-time Updates**: Live progress tracking and agent communication
- **Scalability**: Handles concurrent users via Modal deployment
### Technical Specifications
- **Response Time**: 30-60 seconds for comprehensive research
- **Source Coverage**: 10-20 sources per query
- **Agent Coordination**: Asynchronous task execution
- **Error Resilience**: Graceful fallbacks and mock data
- **API Integration**: 3+ real-time data sources
## π Unique Selling Points
1. **True Multi-Agent Collaboration**: Agents actually communicate and build on each other's work
2. **Adaptive Planning**: Research strategy adjusts based on query complexity
3. **Production-Grade**: Real API integrations with comprehensive error handling
4. **Academic Quality**: Professional citation generation in multiple formats
5. **Scalable Architecture**: Ready for real-world deployment
6. **Beautiful UX**: Intuitive interface that showcases agent intelligence
## π― Next Steps for Submission
1. **Create Demo Video**: Record 2-3 minute demonstration
2. **Deploy to Modal**: Use the provided deployment script
3. **Update README**: Add live demo URL and video link
4. **Submit to Organization**: Push to Agents-MCP-Hackathon Space
5. **Share on Social**: Use #GradioMCPHackathon hashtag
---
**This project represents a complete, production-ready multi-agent research system perfect for Track 3: Agentic Demo Showcase. It demonstrates sophisticated AI agent collaboration while solving real research problems.** |