GerlandoRex's picture
add(agents): loggers + system prompt in base agent + filtering AI Messages in human resume
cb09459
from typing import List, Optional
from pmcp.agents.agent_base import AgentBlueprint
from langchain_core.tools import BaseTool
from langchain_openai import ChatOpenAI
from langchain_core.messages import HumanMessage
from pmcp.models.state import PlanningState
from loguru import logger
class ExecutorAgent:
def __init__(self, llm: ChatOpenAI, tools: Optional[List[BaseTool]] = None):
self.agent = AgentBlueprint(
agent_name="EXECUTOR_AGENT",
description="The agent that executes all the steps for the planner",
llm=llm,
)
def call_executor_agent(self, state: PlanningState):
plan_step_index = state.plan_step
current_step = None
messages = []
if len(state.plan.steps) > plan_step_index:
current_step = state.plan.steps[plan_step_index]
messages = [
HumanMessage(
content=f"The {current_step.agent} agent should perform the following action:\n{current_step.description}"
)
]
logger.info(f"The Executor is executing step: {current_step}")
return {
"plan_step": plan_step_index + 1,
"messages": messages,
"current_step": current_step,
}
async def acall_executor_agent(self, state: PlanningState):
plan_step_index = state.plan_step
current_step = None
messages = []
if len(state.plan.steps) > plan_step_index:
current_step = state.plan.steps[plan_step_index]
messages = [
HumanMessage(
content=f"The {current_step.agent} agent should perform the following action:\n{current_step.description}"
)
]
logger.info(f"The Executor is executing step: {current_step}")
return {
"plan_step": plan_step_index + 1,
"messages": messages,
"current_step": current_step,
}