Javier-Jimenez99 commited on
Commit
0b1cfe4
·
1 Parent(s): 86a7b55

Eliminar pasos intermedios del historial de ejecución y limpiar mensajes de depuración en la función de chat.

Browse files
Files changed (1) hide show
  1. app.py +1 -15
app.py CHANGED
@@ -10,7 +10,7 @@ from dotenv import load_dotenv
10
  import os
11
  import json
12
  from datetime import datetime
13
- from typing import Dict, List, Any
14
 
15
  load_dotenv()
16
 
@@ -64,8 +64,6 @@ def format_execution_history():
64
  formatted_history.append(f"**[{timestamp}] 🔧 Llamada a Herramienta**\n\n**Herramienta**: {tool_data['name']}\n\n**Argumentos**: \n\n```json\n{json.dumps(tool_data.get('args', {}), indent=2)}\n```\n\n")
65
  elif step_type == "tool_result":
66
  formatted_history.append(f"**[{timestamp}] ✅ Resultado de Herramienta**\n\n```\n{entry['data']}\n```\n\n")
67
- elif step_type == "intermediate_step":
68
- formatted_history.append(f"**[{timestamp}] 🧠 Paso Intermedio**\n\n{entry['data']}\n\n")
69
  elif step_type == "error":
70
  formatted_history.append(f"**[{timestamp}] ❌ Error**\n\n{entry['data']}\n\n")
71
 
@@ -124,15 +122,11 @@ async def chat(history: list, tab_id: str=None, anthropic_api_key: str=None):
124
  if tab_id:
125
  history[-1]["content"] += f"\nThis is your tab_id: {tab_id}"
126
 
127
- print(f"Received message: {history[-1]['content']}")
128
- print(f"Complete chat history: {history}")
129
-
130
  llm_provider = os.getenv("LLM_PROVIDER", "ollama").lower()
131
  ollama_model = os.getenv("OLLAMA_MODEL", "qwen3:8b")
132
 
133
  try:
134
  agent = await create_agent_with_llm(llm_provider, anthropic_api_key, ollama_model, tools)
135
- add_to_execution_history("intermediate_step", f"Agente creado con provider: {llm_provider}", tab_id)
136
  except ValueError as e:
137
  error_msg = str(e)
138
  add_to_execution_history("error", error_msg, tab_id)
@@ -161,8 +155,6 @@ async def chat(history: list, tab_id: str=None, anthropic_api_key: str=None):
161
  cleaned = re.sub(r'<think>.*?</think>', '', output, flags=re.DOTALL).strip()
162
 
163
  add_to_execution_history("agent_response", cleaned, tab_id)
164
-
165
- print(f"Processed output: {cleaned}")
166
  return cleaned
167
 
168
  except Exception as e:
@@ -193,15 +185,11 @@ async def chat_with_history_tracking(message: str, history: List, tab_id: str =
193
  if tab_id:
194
  messages[-1]["content"] += f"\nThis is your tab_id: {tab_id}"
195
 
196
- print(f"Received message: {message}")
197
- print(f"Complete chat history: {messages}")
198
-
199
  llm_provider = os.getenv("LLM_PROVIDER", "ollama").lower()
200
  ollama_model = os.getenv("OLLAMA_MODEL", "qwen3:8b")
201
 
202
  try:
203
  agent = await create_agent_with_llm(llm_provider, anthropic_api_key, ollama_model, tools)
204
- add_to_execution_history("intermediate_step", f"Agente creado con provider: {llm_provider}", tab_id)
205
  except ValueError as e:
206
  error_msg = str(e)
207
  add_to_execution_history("error", error_msg, tab_id)
@@ -233,8 +221,6 @@ async def chat_with_history_tracking(message: str, history: List, tab_id: str =
233
  cleaned = re.sub(r'<think>.*?</think>', '', output, flags=re.DOTALL).strip()
234
 
235
  add_to_execution_history("agent_response", cleaned, tab_id)
236
-
237
- print(f"Processed output: {cleaned}")
238
  history.append([message, cleaned])
239
 
240
  return history, format_execution_history()
 
10
  import os
11
  import json
12
  from datetime import datetime
13
+ from typing import List, Any
14
 
15
  load_dotenv()
16
 
 
64
  formatted_history.append(f"**[{timestamp}] 🔧 Llamada a Herramienta**\n\n**Herramienta**: {tool_data['name']}\n\n**Argumentos**: \n\n```json\n{json.dumps(tool_data.get('args', {}), indent=2)}\n```\n\n")
65
  elif step_type == "tool_result":
66
  formatted_history.append(f"**[{timestamp}] ✅ Resultado de Herramienta**\n\n```\n{entry['data']}\n```\n\n")
 
 
67
  elif step_type == "error":
68
  formatted_history.append(f"**[{timestamp}] ❌ Error**\n\n{entry['data']}\n\n")
69
 
 
122
  if tab_id:
123
  history[-1]["content"] += f"\nThis is your tab_id: {tab_id}"
124
 
 
 
 
125
  llm_provider = os.getenv("LLM_PROVIDER", "ollama").lower()
126
  ollama_model = os.getenv("OLLAMA_MODEL", "qwen3:8b")
127
 
128
  try:
129
  agent = await create_agent_with_llm(llm_provider, anthropic_api_key, ollama_model, tools)
 
130
  except ValueError as e:
131
  error_msg = str(e)
132
  add_to_execution_history("error", error_msg, tab_id)
 
155
  cleaned = re.sub(r'<think>.*?</think>', '', output, flags=re.DOTALL).strip()
156
 
157
  add_to_execution_history("agent_response", cleaned, tab_id)
 
 
158
  return cleaned
159
 
160
  except Exception as e:
 
185
  if tab_id:
186
  messages[-1]["content"] += f"\nThis is your tab_id: {tab_id}"
187
 
 
 
 
188
  llm_provider = os.getenv("LLM_PROVIDER", "ollama").lower()
189
  ollama_model = os.getenv("OLLAMA_MODEL", "qwen3:8b")
190
 
191
  try:
192
  agent = await create_agent_with_llm(llm_provider, anthropic_api_key, ollama_model, tools)
 
193
  except ValueError as e:
194
  error_msg = str(e)
195
  add_to_execution_history("error", error_msg, tab_id)
 
221
  cleaned = re.sub(r'<think>.*?</think>', '', output, flags=re.DOTALL).strip()
222
 
223
  add_to_execution_history("agent_response", cleaned, tab_id)
 
 
224
  history.append([message, cleaned])
225
 
226
  return history, format_execution_history()