File size: 11,215 Bytes
7c012de 7e9dcae 7c012de |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 |
/**
* Smart Document Ingestion Service
* Combines Modal's serverless compute with Nebius AI analysis
*/
import { modalClient, type DocumentProcessingTask } from './modal-client';
import { nebiusClient } from './nebius-client';
import { storage } from './storage';
import type { InsertDocument } from '@shared/schema';
interface DocumentUpload {
file: Buffer | string;
filename: string;
contentType: string;
metadata?: Record<string, any>;
}
interface IngestionResult {
documentId: number;
processingTaskId: string;
analysis: {
category: string;
summary: string;
keyPoints: string[];
qualityScore: number;
};
embeddings: number[];
status: 'processing' | 'completed' | 'failed';
}
class SmartIngestionService {
/**
* Process uploaded document with full AI pipeline
*/
async ingestDocument(upload: DocumentUpload): Promise<IngestionResult> {
try {
// Step 1: Extract text content using Modal OCR if needed
let textContent: string;
if (upload.contentType.includes('pdf') || upload.contentType.includes('image')) {
const ocrTask = await modalClient.extractTextFromDocuments([
this.uploadToTempStorage(upload)
]);
// Wait for OCR completion (simplified for demo)
textContent = await this.waitForTaskCompletion(ocrTask.taskId);
} else {
textContent = upload.file.toString();
}
// Step 2: Analyze document using Nebius AI
const [
categoryAnalysis,
summaryAnalysis,
keyPointsAnalysis,
qualityAnalysis
] = await Promise.all([
nebiusClient.analyzeDocument({
content: textContent,
analysisType: 'classification'
}),
nebiusClient.analyzeDocument({
content: textContent,
analysisType: 'summary'
}),
nebiusClient.analyzeDocument({
content: textContent,
analysisType: 'key_points'
}),
nebiusClient.analyzeDocument({
content: textContent,
analysisType: 'quality_score'
})
]);
// Step 3: Generate embeddings using Nebius
const embeddingResponse = await nebiusClient.createEmbeddings({
input: textContent.substring(0, 8000), // Limit for token constraints
model: 'text-embedding-3-large'
});
// Step 4: Create document in storage
const documentData: InsertDocument = {
title: upload.filename,
content: textContent,
sourceType: this.extractSourceType(categoryAnalysis.analysis),
source: upload.filename,
url: upload.metadata?.url,
metadata: {
...upload.metadata,
analysis: {
category: categoryAnalysis.analysis,
summary: summaryAnalysis.analysis,
keyPoints: keyPointsAnalysis.analysis,
qualityScore: this.extractQualityScore(qualityAnalysis.analysis)
},
contentType: upload.contentType,
fileSize: Buffer.isBuffer(upload.file) ? upload.file.length : upload.file.length,
processingTimestamp: new Date().toISOString()
}
};
const document = await storage.createDocument(documentData);
// Step 5: Queue vector indexing with Modal
const indexTask = await modalClient.buildVectorIndex([{
id: document.id.toString(),
content: textContent,
embeddings: embeddingResponse.data[0].embedding,
metadata: document.metadata
}]);
return {
documentId: document.id,
processingTaskId: indexTask.taskId,
analysis: {
category: this.extractCategory(categoryAnalysis.analysis),
summary: summaryAnalysis.analysis,
keyPoints: this.parseKeyPoints(keyPointsAnalysis.analysis),
qualityScore: this.extractQualityScore(qualityAnalysis.analysis)
},
embeddings: embeddingResponse.data[0].embedding,
status: 'completed'
};
} catch (error) {
console.error('Document ingestion failed:', error);
throw new Error(`Ingestion failed: ${error instanceof Error ? error.message : 'Unknown error'}`);
}
}
/**
* Batch process multiple documents using Modal's distributed compute
*/
async batchIngestDocuments(uploads: DocumentUpload[]): Promise<{
taskId: string;
estimatedCompletion: Date;
documentsQueued: number;
}> {
// Prepare documents for batch processing
const documents = uploads.map((upload, index) => ({
id: `batch_${Date.now()}_${index}`,
content: upload.file.toString(),
metadata: {
filename: upload.filename,
contentType: upload.contentType,
...upload.metadata
}
}));
// Submit to Modal for distributed processing
const task = await modalClient.batchProcessDocuments({
documents,
modelName: 'text-embedding-3-large',
batchSize: 20
});
return {
taskId: task.taskId,
estimatedCompletion: new Date(Date.now() + uploads.length * 2000), // 2s per doc estimate
documentsQueued: uploads.length
};
}
/**
* Enhanced search using both Modal vector search and Nebius query understanding
*/
async enhancedSearch(query: string, options: {
maxResults?: number;
searchType?: 'semantic' | 'hybrid';
useQueryEnhancement?: boolean;
} = {}): Promise<{
results: any[];
enhancedQuery?: any;
searchInsights?: any;
}> {
const { maxResults = 10, searchType = 'semantic', useQueryEnhancement = true } = options;
// Step 1: Enhance query using Nebius AI
let enhancedQueryData;
let searchQuery = query;
if (useQueryEnhancement) {
enhancedQueryData = await nebiusClient.enhanceQuery(query);
searchQuery = enhancedQueryData.enhancedQuery;
}
// Step 2: Perform vector search using Modal's high-performance endpoint
let modalResults = [];
// Skip Modal if not configured properly
if (process.env.MODAL_TOKEN_ID && process.env.MODAL_TOKEN_SECRET) {
try {
console.log('π Attempting Modal vector search...');
const modalResponse = await modalClient.vectorSearch(
searchQuery,
'main_index', // Assuming we have a main index
maxResults
);
modalResults = modalResponse.results || [];
console.log(`β
Modal search returned ${modalResults.length} results`);
} catch (error) {
console.log('β Modal search failed:', error instanceof Error ? error.message : String(error));
console.log('π Falling back to local search');
}
} else {
console.log('β οΈ Modal not configured, using local search only');
}
// Step 3: Get local results as backup/supplement
const localResults = await storage.searchDocuments({
query: searchQuery,
searchType: searchType as "semantic" | "keyword" | "hybrid",
limit: maxResults,
offset: 0
});
// Step 4: Combine and rank results using Nebius AI
const combinedResults = [...modalResults, ...localResults.results]
.slice(0, maxResults * 2); // Get more for re-ranking
// Step 5: Score relevance using Nebius AI
const scoredResults = await Promise.all(
combinedResults.map(async (result) => {
try {
const relevanceData = await nebiusClient.scoreCitationRelevance(query, {
title: result.title,
content: result.content,
snippet: result.snippet || result.content.substring(0, 200)
});
return {
...result,
relevanceScore: relevanceData.relevanceScore,
aiExplanation: relevanceData.explanation,
keyReasons: relevanceData.keyReasons
};
} catch (error) {
return { ...result, relevanceScore: result.relevanceScore || 0.5 };
}
})
);
// Step 6: Sort by AI-enhanced relevance scores
const finalResults = scoredResults
.sort((a, b) => (b.relevanceScore || 0) - (a.relevanceScore || 0))
.slice(0, maxResults);
return {
results: finalResults,
enhancedQuery: enhancedQueryData,
searchInsights: {
totalResults: finalResults.length,
avgRelevanceScore: finalResults.reduce((acc, r) => acc + (r.relevanceScore || 0), 0) / finalResults.length,
modalResultsCount: modalResults.length,
localResultsCount: localResults.results.length
}
};
}
/**
* Generate research synthesis using Nebius AI
*/
async generateResearchSynthesis(query: string, documents: any[]): Promise<any> {
if (documents.length === 0) {
return {
synthesis: 'No documents available for synthesis',
keyFindings: [],
gaps: ['Insufficient source material'],
recommendations: ['Search for more relevant documents']
};
}
return nebiusClient.generateResearchInsights(
documents.map(doc => ({
title: doc.title,
content: doc.content,
metadata: doc.metadata
})),
query
);
}
// Helper methods
private uploadToTempStorage(upload: DocumentUpload): string {
// In production, upload to cloud storage and return URL
return `temp://documents/${upload.filename}`;
}
private async waitForTaskCompletion(taskId: string): Promise<string> {
// Simplified polling for demo - in production use webhooks
const maxAttempts = 30;
let attempts = 0;
while (attempts < maxAttempts) {
const status = await modalClient.getTaskStatus(taskId);
if (status.status === 'completed') {
return status.result?.extractedText || 'Text extraction completed';
} else if (status.status === 'failed') {
throw new Error(`Task failed: ${status.error}`);
}
await new Promise(resolve => setTimeout(resolve, 2000));
attempts++;
}
throw new Error('Task timed out');
}
private extractSourceType(analysis: string): string {
const types: Record<string, string> = {
'academic_paper': 'academic',
'technical_documentation': 'technical',
'research_report': 'research',
'code_repository': 'code',
'blog_post': 'web',
'news_article': 'news'
};
for (const [key, value] of Object.entries(types)) {
if (analysis.toLowerCase().includes(key)) {
return value;
}
}
return 'general';
}
private extractCategory(analysis: string): string {
return analysis.split('\n')[0] || 'Unknown';
}
private parseKeyPoints(analysis: string): string[] {
return analysis.split('\n')
.filter(line => line.trim().startsWith('-') || line.trim().startsWith('β’') || line.match(/^\d+\./))
.map(line => line.replace(/^[-β’\d.]\s*/, '').trim())
.slice(0, 5);
}
private extractQualityScore(analysis: string): number {
const scoreMatch = analysis.match(/(\d+(?:\.\d+)?)\s*\/?\s*10/);
if (scoreMatch) {
return parseFloat(scoreMatch[1]);
}
return 7.0; // Default score
}
}
export const smartIngestionService = new SmartIngestionService();
export type { DocumentUpload, IngestionResult }; |