File size: 49,034 Bytes
7c012de 741fd46 7c012de 10ac46e ccf1a85 7c012de b5baf9e 7c012de b5baf9e 7c012de 24425b1 a5766c9 24425b1 a5766c9 24425b1 a5766c9 e782c0f a5766c9 24425b1 a5766c9 24425b1 b5baf9e a5766c9 24425b1 b5baf9e 24425b1 7c012de 24425b1 7c012de a5766c9 e782c0f a5766c9 e782c0f 7c012de a5766c9 e782c0f a5766c9 e782c0f a5766c9 e782c0f cd55914 e782c0f a5766c9 e782c0f a5766c9 e782c0f a5766c9 7c012de 951fb3f 7c012de 741fd46 db97c61 741fd46 db97c61 ccf1a85 db97c61 ccf1a85 10ac46e 7c012de |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 |
import { Express } from "express";
import { createServer, Server } from "http";
import { z } from "zod";
import fs from "fs";
import { storage } from "./storage";
import { searchRequestSchema } from "@shared/schema";
import { smartIngestionService } from "./smart-ingestion";
import { nebiusClient } from "./nebius-client";
import { modalClient } from "./modal-client";
import documentRoutes from "./document-routes";
import uploadFallbackRoutes from "./upload-fallback";
interface GitHubRepo {
id: number;
name: string;
full_name: string;
description: string;
html_url: string;
stargazers_count: number;
language: string;
topics: string[];
created_at: string;
updated_at: string;
}
// Using Nebius client instead of OpenAI for all AI operations
// Helper function to clean up DeepSeek R1 thinking tags
function cleanThinkingTags(text: string): string {
if (typeof text === 'string' && text.includes('<think>')) {
// First try to remove complete <think>...</think> pairs
let cleaned = text.replace(/<think>[\s\S]*?<\/think>\s*/g, '');
// If thinking tags remain (e.g., unclosed), remove everything from <think> onwards
if (cleaned.includes('<think>')) {
cleaned = cleaned.substring(0, cleaned.indexOf('<think>'));
}
return cleaned.trim();
}
return text;
}
// URL validation utility to check if websites are accessible and content is valid
async function validateUrl(url: string, timeout: number = 5000): Promise<boolean> {
try {
console.log(`Validating URL: ${url}`);
const controller = new AbortController();
const timeoutId = setTimeout(() => controller.abort(), timeout);
const urlObj = new URL(url);
// Special handling for ArXiv URLs to validate paper existence
if (urlObj.hostname.includes('arxiv.org')) {
return await validateArxivUrl(url, controller.signal);
}
// Special handling for other domains that might return 200 but show error pages
if (urlObj.hostname.includes('vldb.org') ||
urlObj.hostname.includes('cvpr.org') ||
urlObj.hostname.includes('icse.org')) {
return await validateContentUrl(url, controller.signal);
}
// Fast path for highly trusted domains
const highlyTrustedDomains = [
'wikipedia.org',
'github.com',
'restcountries.com'
];
if (highlyTrustedDomains.some(domain => urlObj.hostname.includes(domain))) {
// Still do a basic check but trust these more
const response = await fetch(url, {
method: 'HEAD',
signal: controller.signal,
headers: {
'User-Agent': 'Knowledge-Base-Browser/1.0 (URL Validator)'
}
});
clearTimeout(timeoutId);
const isValid = response.status >= 200 && response.status < 400;
console.log(`URL ${url} validation result: ${isValid ? 'VALID' : 'INVALID'} (${response.status})`);
return isValid;
}
// Standard validation for other URLs
const response = await fetch(url, {
method: 'HEAD',
signal: controller.signal,
headers: {
'User-Agent': 'Knowledge-Base-Browser/1.0 (URL Validator)'
}
});
clearTimeout(timeoutId);
// Consider 2xx and 3xx status codes as valid
const isValid = response.status >= 200 && response.status < 400;
console.log(`URL ${url} validation result: ${isValid ? 'VALID' : 'INVALID'} (${response.status})`);
return isValid;
} catch (error) {
console.log(`URL ${url} validation failed: ${error instanceof Error ? error.message : String(error)}`);
return false;
}
}
// Special validation for ArXiv URLs to check if papers actually exist
async function validateArxivUrl(url: string, signal: AbortSignal): Promise<boolean> {
try {
// Extract paper ID from URL
const match = url.match(/arxiv\.org\/abs\/(.+)$/);
if (!match) {
console.log(`Invalid ArXiv URL format: ${url}`);
return false;
}
const paperId = match[1];
// Validate ArXiv ID format (should be like 2024.12345, cs.AI/1234567, etc.)
const validFormats = [
/^\d{4}\.\d{4,5}$/, // New format: 2024.12345
/^[a-z-]+(\.[A-Z]{2})?\/\d{7}$/, // Old format: cs.AI/1234567
];
const hasValidFormat = validFormats.some(regex => regex.test(paperId));
if (!hasValidFormat) {
console.log(`Invalid ArXiv paper ID format: ${paperId}`);
return false;
}
// Try to fetch the paper to see if it exists
const response = await fetch(url, {
method: 'GET', // Need GET to check content
signal: signal,
headers: {
'User-Agent': 'Knowledge-Base-Browser/1.0 (ArXiv Validator)'
}
});
if (!response.ok) {
console.log(`ArXiv URL returned ${response.status}: ${url}`);
return false;
}
// Check if the response contains error messages
const content = await response.text();
const errorIndicators = [
'not recognized',
'might instead try to search',
'article identifier',
'not found',
'error'
];
const hasError = errorIndicators.some(indicator =>
content.toLowerCase().includes(indicator.toLowerCase())
);
if (hasError) {
console.log(`ArXiv paper not found: ${url}`);
return false;
}
console.log(`ArXiv URL validation successful: ${url}`);
return true;
} catch (error) {
console.log(`ArXiv URL validation failed: ${url} - ${error instanceof Error ? error.message : String(error)}`);
return false;
}
}
// Validation for URLs that might return 200 but show error content
async function validateContentUrl(url: string, signal: AbortSignal): Promise<boolean> {
try {
const response = await fetch(url, {
method: 'GET', // Need GET to check content
signal: signal,
headers: {
'User-Agent': 'Knowledge-Base-Browser/1.0 (Content Validator)'
}
});
if (!response.ok) {
console.log(`Content URL returned ${response.status}: ${url}`);
return false;
}
// Check if the response contains common error messages
const content = await response.text();
const errorIndicators = [
'404',
'not found',
'page not found',
'does not exist',
'error',
'can\'t be reached',
'site is temporarily unavailable'
];
const hasError = errorIndicators.some(indicator =>
content.toLowerCase().includes(indicator.toLowerCase())
);
if (hasError) {
console.log(`Content validation failed for: ${url}`);
return false;
}
console.log(`Content URL validation successful: ${url}`);
return true;
} catch (error) {
console.log(`Content URL validation failed: ${url} - ${error instanceof Error ? error.message : String(error)}`);
return false;
}
}
// Batch validate multiple URLs with concurrency limit
async function validateUrls(urls: string[], concurrencyLimit: number = 5): Promise<Map<string, boolean>> {
const results = new Map<string, boolean>();
// Process URLs in batches to avoid overwhelming the network
for (let i = 0; i < urls.length; i += concurrencyLimit) {
const batch = urls.slice(i, i + concurrencyLimit);
const batchPromises = batch.map(async (url) => {
const isValid = await validateUrl(url);
results.set(url, isValid);
});
await Promise.all(batchPromises);
}
return results;
}
// Enhanced web search using multiple authentic data sources
async function searchWeb(query: string, maxResults: number = 10): Promise<any[]> {
const results = [];
try {
console.log(`Starting web search for: "${query}"`);
// 1. Wikipedia search for general knowledge
try {
// First try Wikipedia search API
const wikiSearchUrl = `https://en.wikipedia.org/api/rest_v1/page/summary/${encodeURIComponent(query.replace(/\s+/g, '_'))}`;
console.log('Searching Wikipedia:', wikiSearchUrl);
const wikiResponse = await fetch(wikiSearchUrl, {
headers: {
'User-Agent': 'Knowledge-Base-Browser/1.0'
},
signal: AbortSignal.timeout(3000) // 3 second timeout
});
if (wikiResponse.ok) {
const wikiData = await wikiResponse.json();
if (wikiData.extract && wikiData.extract.length > 50) {
results.push({
title: wikiData.title,
content: wikiData.extract,
url: wikiData.content_urls?.desktop?.page || `https://en.wikipedia.org/wiki/${encodeURIComponent(query)}`,
source: 'Wikipedia',
type: 'encyclopedia'
});
console.log('Found Wikipedia result:', wikiData.title);
}
}
} catch (wikiError) {
console.log('Wikipedia search failed:', wikiError instanceof Error ? wikiError.message : String(wikiError));
}
// 2. ArXiv search for research papers (for ML/AI/CS topics)
if (query.toLowerCase().includes('machine learning') ||
query.toLowerCase().includes('neural network') ||
query.toLowerCase().includes('algorithm') ||
query.toLowerCase().includes('artificial intelligence') ||
query.toLowerCase().includes('data science') ||
query.toLowerCase().includes('deep learning')) {
try {
const arxivQuery = encodeURIComponent(query);
const arxivUrl = `http://export.arxiv.org/api/query?search_query=all:${arxivQuery}&start=0&max_results=3&sortBy=relevance&sortOrder=descending`;
console.log('Searching ArXiv for research papers');
const arxivResponse = await fetch(arxivUrl, {
signal: AbortSignal.timeout(5000) // 5 second timeout
});
if (arxivResponse.ok) {
const arxivXml = await arxivResponse.text();
// Parse ArXiv XML response
const entries = arxivXml.split('<entry>').slice(1);
for (const entry of entries.slice(0, 2)) {
const titleMatch = entry.match(/<title[^>]*>([^<]+)<\/title>/);
const summaryMatch = entry.match(/<summary[^>]*>([^<]+)<\/summary>/);
const linkMatch = entry.match(/<id[^>]*>([^<]+)<\/id>/);
if (titleMatch && summaryMatch && linkMatch) {
const title = titleMatch[1].trim();
const summary = summaryMatch[1].trim().substring(0, 300);
const url = linkMatch[1].trim();
if (title && summary.length > 50) {
results.push({
title: title,
content: summary,
url: url,
source: 'ArXiv Research',
type: 'research_paper'
});
console.log('Found ArXiv paper:', title);
}
}
}
}
} catch (arxivError) {
console.log('ArXiv search failed:', arxivError instanceof Error ? arxivError.message : String(arxivError));
}
}
// 3. Try REST Countries API for country-related queries
if (query.toLowerCase().includes('country') || query.toLowerCase().includes('nation')) {
try {
const countryQuery = query.replace(/country|nation/gi, '').trim();
const countryUrl = `https://restcountries.com/v3.1/name/${encodeURIComponent(countryQuery)}`;
const countryResponse = await fetch(countryUrl, {
signal: AbortSignal.timeout(3000) // 3 second timeout
});
if (countryResponse.ok) {
const countryData = await countryResponse.json();
if (Array.isArray(countryData) && countryData.length > 0) {
const country = countryData[0];
results.push({
title: `${country.name.common} - Country Information`,
content: `${country.name.common} is located in ${country.region}, ${country.subregion}. Capital: ${country.capital?.[0] || 'N/A'}. Population: ${country.population?.toLocaleString() || 'Unknown'}. Official languages: ${Object.values(country.languages || {}).join(', ')}.`,
url: `https://en.wikipedia.org/wiki/${encodeURIComponent(country.name.common)}`,
source: 'REST Countries API',
type: 'geographic'
});
console.log('Found country information:', country.name.common);
}
}
} catch (countryError) {
console.log('Country search failed:', countryError instanceof Error ? countryError.message : String(countryError));
}
}
console.log(`Web search completed. Found ${results.length} results.`);
// Validate URLs before returning results
if (results.length > 0) {
console.log('Validating URLs for accessibility...');
const urls = results.map(result => result.url);
const validationResults = await validateUrls(urls);
// Filter out results with invalid URLs
const validResults = results.filter(result => {
const isValid = validationResults.get(result.url);
if (!isValid) {
console.log(`Filtered out invalid URL: ${result.url} (${result.title})`);
}
return isValid;
});
console.log(`URL validation completed. ${validResults.length}/${results.length} URLs are accessible.`);
return validResults.slice(0, maxResults);
}
return results.slice(0, maxResults);
} catch (error) {
console.error('Web search error:', error);
return [];
}
}
// Transform web search results to document format
function transformWebResultToDocument(result: any, rank: number, query: string): any {
const snippet = result.content.length > 200 ?
result.content.substring(0, 200) + '...' :
result.content;
return {
id: `web_${Date.now()}_${rank}`,
title: result.title,
content: result.content,
snippet,
source: result.source,
sourceType: 'web',
url: result.url,
metadata: {
search_type: result.type,
fetched_at: new Date().toISOString()
},
relevanceScore: Math.max(0.2, 0.6 - (rank * 0.1)), // Lower scores for external results
rank: rank + 1,
searchQuery: query,
retrievalTime: Math.random() * 0.2 + 0.1,
tokenCount: Math.floor(result.content.length / 4)
};
}
async function searchGitHubRepos(query: string, maxResults: number = 10): Promise<any[]> {
try {
// Parse query to extract author and repository details
const lowerQuery = query.toLowerCase();
let searchQuery = '';
// Check if query contains "by [author]" pattern - handle multiple name formats
const byAuthorMatch = query.match(/by\s+([a-zA-Z0-9_-]+(?:\s+[a-zA-Z0-9_-]+)*)/i);
if (byAuthorMatch) {
const authorName = byAuthorMatch[1].trim();
const topicPart = query.replace(/by\s+[a-zA-Z0-9_-]+(?:\s+[a-zA-Z0-9_-]+)*/i, '').trim();
// Try different author search strategies - include multiple language options
const authorSearches = [
`${topicPart} user:${authorName.replace(/\s+/g, '')}`, // No language restriction first
`${topicPart} user:${authorName.replace(/\s+/g, '')} language:python`,
`${topicPart} user:${authorName.replace(/\s+/g, '')} language:"jupyter notebook"`,
`${topicPart} "${authorName}"` // Search in description/readme
];
// Use the first search strategy
searchQuery = authorSearches[0];
} else if (lowerQuery.includes('data structures') || lowerQuery.includes('algorithm')) {
// Enhanced search for data structures and algorithms
searchQuery = `${query} "data structures" OR "algorithms" language:python`;
} else {
searchQuery = `${query} language:python`;
}
console.log('GitHub search query:', searchQuery);
const response = await fetch(`https://api.github.com/search/repositories?q=${encodeURIComponent(searchQuery)}&sort=stars&order=desc&per_page=${maxResults}`, {
headers: {
'Authorization': `token ${process.env.GITHUB_TOKEN}`,
'Accept': 'application/vnd.github.v3+json',
'User-Agent': 'Knowledge-Base-Browser'
}
});
if (!response.ok) {
console.error('GitHub API error:', response.status, response.statusText);
return [];
}
const data = await response.json();
// If no results with author search, try alternative search strategies
if ((!data.items || data.items.length === 0) && byAuthorMatch) {
const authorName = byAuthorMatch[1].trim();
const topicPart = query.replace(/by\s+[a-zA-Z0-9_-]+(?:\s+[a-zA-Z0-9_-]+)*/i, '').trim();
// Try different fallback strategies without language restrictions
const fallbackQueries = [
`"${authorName}" ${topicPart}`,
`${topicPart} "${authorName}"`,
`${authorName} ${topicPart}`,
`${topicPart} user:${authorName.replace(/\s+/g, '')}`,
`${topicPart}`
];
for (const fallbackQuery of fallbackQueries) {
console.log('Trying fallback query:', fallbackQuery);
const fallbackResponse = await fetch(`https://api.github.com/search/repositories?q=${encodeURIComponent(fallbackQuery)}&sort=stars&order=desc&per_page=${maxResults}`, {
headers: {
'Authorization': `token ${process.env.GITHUB_TOKEN}`,
'Accept': 'application/vnd.github.v3+json',
'User-Agent': 'Knowledge-Base-Browser'
}
});
if (fallbackResponse.ok) {
const fallbackData = await fallbackResponse.json();
if (fallbackData.items && fallbackData.items.length > 0) {
// Filter results to prioritize those from the specified author
const authorFilteredResults = fallbackData.items.filter((repo: any) =>
repo.owner.login.toLowerCase().includes(authorName.toLowerCase()) ||
repo.full_name.toLowerCase().includes(authorName.toLowerCase()) ||
repo.description?.toLowerCase().includes(authorName.toLowerCase())
);
if (authorFilteredResults.length > 0) {
return authorFilteredResults;
} else {
return fallbackData.items;
}
}
}
}
}
const repos = data.items || [];
// Validate GitHub repository URLs (though GitHub repos are usually reliable)
if (repos.length > 0) {
console.log('Validating GitHub repository URLs...');
const urls = repos.map((repo: GitHubRepo) => repo.html_url);
const validationResults = await validateUrls(urls);
// Filter out repos with invalid URLs
const validRepos = repos.filter((repo: GitHubRepo) => {
const isValid = validationResults.get(repo.html_url);
if (!isValid) {
console.log(`Filtered out invalid GitHub repo: ${repo.html_url} (${repo.full_name})`);
}
return isValid;
});
console.log(`GitHub URL validation completed. ${validRepos.length}/${repos.length} repositories are accessible.`);
return validRepos;
}
return repos;
} catch (error) {
console.error('Error fetching GitHub repos:', error);
return [];
}
}
function transformGitHubRepoToDocument(repo: GitHubRepo, rank: number, query: string): any {
const snippet = repo.description ?
repo.description.substring(0, 200) + (repo.description.length > 200 ? '...' : '') :
'No description available';
return {
id: repo.id,
title: `${repo.name} - ${repo.full_name}`,
content: `${repo.description || 'No description available'}\n\nRepository: ${repo.full_name}\nLanguage: ${repo.language}\nStars: ${repo.stargazers_count}\nTopics: ${repo.topics.join(', ')}\nCreated: ${repo.created_at}\nLast Updated: ${repo.updated_at}`,
snippet,
source: `GitHub Repository`,
sourceType: 'code',
url: repo.html_url,
metadata: {
stars: repo.stargazers_count,
language: repo.language,
topics: repo.topics,
created_at: repo.created_at,
updated_at: repo.updated_at
},
relevanceScore: Math.max(0.3, 0.7 - (rank * 0.1)), // Lower scores for GitHub results
rank: rank + 1,
searchQuery: query,
retrievalTime: Math.random() * 0.3 + 0.1,
tokenCount: Math.floor((repo.description?.length || 100) / 4)
};
}
export async function registerRoutes(app: Express): Promise<Server> {
// Knowledge graph data endpoint
app.get("/api/knowledge-graph", async (req, res) => {
try {
const documents = await storage.getDocuments(50);
const nodes: any[] = [];
const links: any[] = [];
// Create document nodes from actual storage
documents.forEach(doc => {
nodes.push({
id: `doc_${doc.id}`,
label: doc.title.substring(0, 50) + (doc.title.length > 50 ? "..." : ""),
type: "document",
size: 12,
color: "#3b82f6",
metadata: {
title: doc.title,
sourceType: doc.sourceType,
year: new Date(doc.createdAt).getFullYear(),
id: doc.id
}
});
});
// Extract concepts from document content
const conceptMap = new Map<string, number>();
const conceptToDocuments = new Map<string, number[]>();
documents.forEach(doc => {
const content = doc.content.toLowerCase();
const concepts = [
'ai', 'artificial intelligence', 'machine learning', 'deep learning',
'neural networks', 'transformer', 'attention', 'embedding', 'vector',
'rag', 'retrieval', 'generation', 'llm', 'gpt', 'claude', 'gemini',
'multimodal', 'fine-tuning', 'training', 'optimization', 'safety',
'alignment', 'reasoning', 'language model', 'nlp', 'computer vision'
];
concepts.forEach(concept => {
if (content.includes(concept)) {
conceptMap.set(concept, (conceptMap.get(concept) || 0) + 1);
if (!conceptToDocuments.has(concept)) {
conceptToDocuments.set(concept, []);
}
conceptToDocuments.get(concept)!.push(doc.id);
}
});
});
// Create document-to-document connections based on shared concepts
const documentConnections = new Map<string, Set<number>>();
documents.forEach(doc1 => {
const doc1Concepts = new Set<string>();
const content1 = doc1.content.toLowerCase();
// Enhanced concept detection for better connections
const allConcepts = [
'ai', 'artificial intelligence', 'machine learning', 'deep learning',
'neural networks', 'transformer', 'attention', 'embedding', 'vector',
'rag', 'retrieval', 'generation', 'llm', 'gpt', 'claude', 'gemini',
'multimodal', 'fine-tuning', 'training', 'optimization', 'safety',
'alignment', 'reasoning', 'language model', 'nlp', 'computer vision',
'code generation', 'programming', 'software', 'development', 'copilot',
'constitutional ai', 'rlhf', 'instruction tuning', 'benchmarks',
'performance', 'efficiency', 'compression', 'quantization', 'edge ai',
'mamba', 'mixture of experts', 'moe', 'architecture', 'scaling'
];
allConcepts.forEach(concept => {
if (content1.includes(concept)) {
doc1Concepts.add(concept);
}
});
// Find related documents with shared concepts
documents.forEach(doc2 => {
if (doc1.id !== doc2.id) {
const content2 = doc2.content.toLowerCase();
let sharedConcepts = 0;
doc1Concepts.forEach(concept => {
if (content2.includes(concept)) {
sharedConcepts++;
}
});
// Create connection if documents share 3+ concepts
if (sharedConcepts >= 3) {
const connectionKey = `${Math.min(doc1.id, doc2.id)}_${Math.max(doc1.id, doc2.id)}`;
if (!documentConnections.has(connectionKey)) {
documentConnections.set(connectionKey, new Set([doc1.id, doc2.id]));
links.push({
source: `doc_${doc1.id}`,
target: `doc_${doc2.id}`,
relationship: "related_concepts",
strength: Math.min(sharedConcepts / 10, 1),
color: "#3b82f6"
});
}
}
}
});
});
// Create concept nodes for concepts that appear in multiple documents
conceptMap.forEach((count, concept) => {
if (count >= 2) {
nodes.push({
id: `concept_${concept.replace(/\s+/g, '_')}`,
label: concept,
type: "concept",
size: 8 + count * 2,
color: "#10b981",
metadata: {
documentCount: count,
concept: concept
}
});
// Link concept to documents
const relatedDocs = conceptToDocuments.get(concept) || [];
relatedDocs.forEach(docId => {
links.push({
source: `doc_${docId}`,
target: `concept_${concept.replace(/\s+/g, '_')}`,
relationship: "contains_concept",
strength: 1,
color: "#10b981"
});
});
}
});
// Extract research teams from document metadata
const researchTeams = new Map<string, number[]>();
documents.forEach(doc => {
if (doc.metadata) {
let teamName = '';
const metadata = typeof doc.metadata === 'string' ? JSON.parse(doc.metadata) : doc.metadata;
// Extract team names from authors or venue
if (metadata.authors && Array.isArray(metadata.authors)) {
// Use first author's affiliation or create team from venue
teamName = metadata.venue || 'Research Team';
} else if (metadata.venue) {
teamName = metadata.venue;
} else if (doc.source) {
// Extract team from source
if (doc.source.includes('OpenAI')) teamName = 'OpenAI Research';
else if (doc.source.includes('Anthropic')) teamName = 'Anthropic';
else if (doc.source.includes('Google') || doc.source.includes('DeepMind')) teamName = 'Google DeepMind';
else if (doc.source.includes('LangChain')) teamName = 'LangChain Team';
else if (doc.source.includes('Research Collective')) teamName = 'AI Research Collective';
else teamName = 'Research Community';
}
if (teamName) {
if (!researchTeams.has(teamName)) {
researchTeams.set(teamName, []);
}
researchTeams.get(teamName)!.push(doc.id);
}
}
});
// Create research team nodes
researchTeams.forEach((docIds, teamName) => {
nodes.push({
id: `team_${teamName.replace(/\s+/g, '_')}`,
label: teamName,
type: "author",
size: 8 + docIds.length * 2,
color: "#f59e0b",
metadata: {
teamName: teamName,
publicationCount: docIds.length
}
});
// Link team to documents
docIds.forEach(docId => {
links.push({
source: `team_${teamName.replace(/\s+/g, '_')}`,
target: `doc_${docId}`,
relationship: "authored_by",
strength: 0.8,
color: "#f59e0b"
});
});
});
// Create source type clusters
const sourceTypes = new Map<string, number[]>();
documents.forEach(doc => {
const sourceType = doc.sourceType || 'unknown';
if (!sourceTypes.has(sourceType)) {
sourceTypes.set(sourceType, []);
}
sourceTypes.get(sourceType)!.push(doc.id);
});
sourceTypes.forEach((docIds, sourceType) => {
if (docIds.length >= 2) {
nodes.push({
id: `source_${sourceType}`,
label: sourceType.charAt(0).toUpperCase() + sourceType.slice(1),
type: "topic",
size: 10,
color: "#8b5cf6",
metadata: {
sourceType: sourceType,
documentCount: docIds.length
}
});
// Link source type to documents
docIds.forEach(docId => {
links.push({
source: `source_${sourceType}`,
target: `doc_${docId}`,
relationship: "categorized_as",
strength: 0.6,
color: "#8b5cf6"
});
});
}
});
res.json({
nodes,
links,
stats: {
totalDocuments: documents.length,
totalConcepts: conceptMap.size,
totalResearchTeams: researchTeams.size,
totalSourceTypes: sourceTypes.size
}
});
} catch (error) {
console.error("Knowledge graph generation failed:", error);
res.status(500).json({
error: "Failed to generate knowledge graph",
nodes: [],
links: [],
stats: { totalDocuments: 0, totalConcepts: 0, totalResearchTeams: 0, totalSourceTypes: 0 }
});
}
});
// Enhanced search with web fallback
app.post("/api/search", async (req, res) => {
try {
const searchRequest = searchRequestSchema.parse(req.body);
const streaming = req.body.streaming === true;
const startTime = Date.now();
let allDocuments: any[] = [];
// Enhanced multi-source search for semantic queries
if (searchRequest.searchType === "semantic") {
console.log(`π Enhanced multi-source search for: "${searchRequest.query}"`);
// 1. First, always do keyword search on knowledge base
console.log('π Searching knowledge base...');
// Enhanced query expansion with multiple search attempts
const queryLower = searchRequest.query.toLowerCase();
const searchQueries = [searchRequest.query]; // Start with original query
// Add related terms for better matching
if (queryLower.includes('mistral')) {
searchQueries.push('Mixtral', 'Mistral AI');
}
if (queryLower.includes('mixtral')) {
searchQueries.push('Mistral', 'mixture of experts');
}
if (queryLower.includes('llama')) {
searchQueries.push('LLaMA', 'Large Language Model Meta AI');
}
if (queryLower.includes('gpt')) {
searchQueries.push('GPT', 'Generative Pre-trained Transformer');
}
if (queryLower.includes('transformer') || queryLower.includes('attention')) {
searchQueries.push('Attention Is All You Need', 'transformer', 'attention mechanism');
}
if (queryLower.includes('constitutional')) {
searchQueries.push('Constitutional AI', 'harmlessness', 'AI feedback');
}
if (queryLower.includes('rag') || queryLower.includes('retrieval')) {
searchQueries.push('Retrieval-Augmented Generation', 'retrieval augmented', 'knowledge-intensive');
}
// Search with each query and combine results
const allSearchResults = new Map<number, any>();
for (const query of searchQueries) {
const searchResult = await storage.searchDocuments({ ...searchRequest, query });
for (const doc of searchResult.results || []) {
if (!allSearchResults.has(doc.id)) {
// Boost relevance for exact matches with expanded terms
let relevanceBoost = 0;
if (query !== searchRequest.query) {
relevanceBoost = 0.2; // Boost expanded term matches
}
allSearchResults.set(doc.id, {
...doc,
relevanceScore: Math.min(doc.relevanceScore + relevanceBoost, 1.0)
});
}
}
}
allDocuments = Array.from(allSearchResults.values());
allDocuments = allDocuments.map(doc => ({
...doc,
relevanceScore: Math.min(doc.relevanceScore + 0.6, 1.0), // Boost local results
rank: doc.rank,
snippet: doc.snippet || doc.content.substring(0, 200) + '...'
}));
console.log(`π Found ${allDocuments.length} local documents`);
console.log(`π Query expansion searched for: ${searchQueries.join(', ')}`);
// Skip AI enhancement for now to test query expansion
// TODO: Re-enable AI enhancement after fixing query expansion
} else {
// Use regular keyword search for other search types
const localResults = await storage.searchDocuments(searchRequest);
// Boost relevance scores for knowledge base documents to prioritize them
allDocuments = (localResults.results || []).map(doc => ({
...doc,
relevanceScore: Math.min(doc.relevanceScore + 0.5, 1.0) // Boost by 0.5
}));
}
// Validate URLs in local storage results as well
if (allDocuments.length > 0) {
console.log('Validating URLs in local storage results...');
const documentsWithUrls = allDocuments.filter(doc => doc.url);
if (documentsWithUrls.length > 0) {
const urls = documentsWithUrls.map(doc => doc.url).filter((url): url is string => url !== null);
const validationResults = await validateUrls(urls);
// Filter out documents with invalid URLs
allDocuments = allDocuments.filter(doc => {
if (!doc.url) return true; // Keep documents without URLs
const isValid = validationResults.get(doc.url);
if (!isValid) {
console.log(`Filtered out local document with invalid URL: ${doc.url} (${doc.title})`);
}
return isValid;
});
console.log(`Local URL validation completed. ${allDocuments.length} documents have valid URLs.`);
}
}
// Always search external sources to provide comprehensive results
console.log(`π Searching external sources to supplement ${allDocuments.length} local results...`);
// Check if we should search GitHub
const isCodeQuery = searchRequest.query.toLowerCase().includes('python') ||
searchRequest.query.toLowerCase().includes('data structures') ||
searchRequest.query.toLowerCase().includes('algorithm') ||
searchRequest.query.toLowerCase().includes('repository') ||
searchRequest.query.toLowerCase().includes('code') ||
searchRequest.query.toLowerCase().includes('programming') ||
searchRequest.query.toLowerCase().includes('github');
// Enhanced keyword detection for AI/ML queries that might have relevant code
const isAIQuery = searchRequest.query.toLowerCase().includes('mistral') ||
searchRequest.query.toLowerCase().includes('llama') ||
searchRequest.query.toLowerCase().includes('transformer') ||
searchRequest.query.toLowerCase().includes('gpt') ||
searchRequest.query.toLowerCase().includes('ai') ||
searchRequest.query.toLowerCase().includes('machine learning') ||
searchRequest.query.toLowerCase().includes('neural network');
// Query analysis for external search triggers
// Enhanced external search with better error handling and timeouts
const externalSearchPromises = [];
// GitHub search for code and AI-related queries
if ((isCodeQuery || isAIQuery) && process.env.GITHUB_TOKEN) {
console.log('π Searching GitHub...');
externalSearchPromises.push(
Promise.race([
searchGitHubRepos(searchRequest.query, Math.min(3, Math.ceil(searchRequest.limit / 3)))
.then(repos => ({
type: 'github',
results: repos.map((repo, index) =>
transformGitHubRepoToDocument(repo, index + allDocuments.length, searchRequest.query)
)
}))
.catch(error => {
console.log('π GitHub search failed:', error.message);
return { type: 'github', results: [] };
}),
new Promise((_, reject) =>
setTimeout(() => reject(new Error('GitHub search timeout')), 8000)
)
]).catch(() => ({ type: 'github', results: [] }))
);
}
// Always include web search for comprehensive coverage
console.log('π Searching web...');
externalSearchPromises.push(
Promise.race([
searchWeb(searchRequest.query, Math.min(3, Math.ceil(searchRequest.limit / 3)))
.then(webResults => ({
type: 'web',
results: webResults.map((result, index) =>
transformWebResultToDocument(result, index + allDocuments.length, searchRequest.query)
)
}))
.catch(error => {
console.log('π Web search failed:', error.message);
return { type: 'web', results: [] };
}),
new Promise((_, reject) =>
setTimeout(() => reject(new Error('Web search timeout')), 5000)
)
]).catch(() => ({ type: 'web', results: [] }))
);
// Wait for external searches with timeout protection
if (externalSearchPromises.length > 0) {
try {
const externalResults = await Promise.all(externalSearchPromises);
// Flatten and combine results
const githubResult = externalResults.find((r: any) => r?.type === 'github') as any;
const webResult = externalResults.find((r: any) => r?.type === 'web') as any;
const githubResults = githubResult?.results || [];
const webResults = webResult?.results || [];
const allExternalResults = [...githubResults, ...webResults];
console.log(`π Found ${allExternalResults.length} external results (GitHub: ${githubResults.length}, Web: ${webResults.length})`);
// Combine local and external results, keeping local results prioritized
if (allExternalResults.length > 0) {
allDocuments = [...allDocuments, ...allExternalResults]
.sort((a, b) => b.relevanceScore - a.relevanceScore)
.slice(0, searchRequest.limit);
}
} catch (externalError: any) {
console.log('π External search failed:', externalError?.message || externalError);
}
}
console.log(`β
Total results: ${allDocuments.length}`);
const searchTime = (Date.now() - startTime) / 1000;
const response = {
results: allDocuments,
totalCount: allDocuments.length,
searchTime,
query: searchRequest.query,
queryId: Date.now()
};
res.json(response);
} catch (error) {
if (error instanceof z.ZodError) {
res.status(400).json({ message: "Invalid search request", errors: error.errors });
} else {
console.error('Search error:', error);
res.status(500).json({ message: "Internal server error" });
}
}
});
// AI explanation endpoint using Nebius
app.post("/api/explain", async (req, res) => {
try {
const { title, snippet, content } = req.body;
if (!title || !snippet) {
return res.status(400).json({ message: "Title and snippet are required" });
}
const prompt = `You are an expert communicator. Explain this document directly in a clear, conversational way suitable for audio playback. Do not show your thinking process - just provide the final explanation.
Title: ${title}
Content: ${snippet}
Provide a brief, engaging explanation (2-3 sentences) that would be pleasant to listen to. Focus on the key concepts and practical value. Start your response immediately with the explanation.`;
const response = await nebiusClient.createChatCompletion({
model: "deepseek-ai/DeepSeek-R1-0528", // Using DeepSeek model via Nebius
messages: [{ role: "user", content: prompt }],
max_tokens: 150,
temperature: 0.7,
});
const explanation = cleanThinkingTags(response.choices[0].message.content);
res.json({ explanation });
} catch (error) {
console.error('AI explanation error:', error);
res.status(500).json({ message: "Failed to generate explanation" });
}
});
// Enhanced AI-powered search using Nebius and Modal
app.post("/api/ai-search", async (req, res) => {
try {
const { query, maxResults = 10, useQueryEnhancement = true } = req.body;
if (!query || typeof query !== 'string') {
return res.status(400).json({ message: "Query is required" });
}
const results = await smartIngestionService.enhancedSearch(query, {
maxResults,
searchType: 'semantic',
useQueryEnhancement
});
res.json(results);
} catch (error) {
console.error('AI search error:', error);
res.status(500).json({
message: "AI search failed",
error: error instanceof Error ? error.message : 'Unknown error'
});
}
});
// Document analysis using Nebius AI
app.post("/api/analyze-document", async (req, res) => {
try {
const { content, analysisType = 'summary', useMarkdown = true } = req.body;
if (!content) {
return res.status(400).json({ message: "Content is required" });
}
const analysis = await nebiusClient.analyzeDocument({
content,
analysisType,
useMarkdown
});
res.json(analysis);
} catch (error) {
console.error('Document analysis error:', error);
res.status(500).json({
message: "Document analysis failed",
error: error instanceof Error ? error.message : 'Unknown error'
});
}
});
// Research synthesis using Nebius AI
app.post("/api/research-synthesis", async (req, res) => {
try {
const { query, documentIds } = req.body;
if (!query || !Array.isArray(documentIds)) {
return res.status(400).json({ message: "Query and document IDs are required" });
}
// Get documents from storage
const documents = await Promise.all(
documentIds.map(id => storage.getDocument(id))
);
const validDocuments = documents.filter(Boolean);
if (validDocuments.length === 0) {
return res.status(400).json({ message: "No valid documents found" });
}
const synthesis = await smartIngestionService.generateResearchSynthesis(
query,
validDocuments
);
res.json(synthesis);
} catch (error) {
console.error('Research synthesis error:', error);
res.status(500).json({
message: "Research synthesis failed",
error: error instanceof Error ? error.message : 'Unknown error'
});
}
});
// Query enhancement using Nebius AI
app.post("/api/enhance-query", async (req, res) => {
try {
const { query, context } = req.body;
if (!query) {
return res.status(400).json({ message: "Query is required" });
}
const enhancement = await nebiusClient.enhanceQuery(query, context);
// Clean up any thinking tags that might appear in string fields
enhancement.enhancedQuery = cleanThinkingTags(enhancement.enhancedQuery);
enhancement.intent = cleanThinkingTags(enhancement.intent);
res.json(enhancement);
} catch (error) {
console.error('Query enhancement error:', error);
res.status(500).json({
message: "Query enhancement failed",
error: error instanceof Error ? error.message : 'Unknown error'
});
}
});
// Modal processing status endpoint
app.get("/api/modal-task/:taskId", async (req, res) => {
try {
const { taskId } = req.params;
const status = await modalClient.getTaskStatus(taskId);
res.json(status);
} catch (error) {
console.error('Modal task status error:', error);
res.status(500).json({
message: "Failed to get task status",
error: error instanceof Error ? error.message : 'Unknown error'
});
}
});
// Batch document ingestion using Modal
app.post("/api/batch-ingest", async (req, res) => {
try {
const { documents } = req.body;
if (!Array.isArray(documents) || documents.length === 0) {
return res.status(400).json({ message: "Documents array is required" });
}
const uploads = documents.map(doc => ({
file: doc.content || '',
filename: doc.filename || 'unknown.txt',
contentType: doc.contentType || 'text/plain',
metadata: doc.metadata || {}
}));
const result = await smartIngestionService.batchIngestDocuments(uploads);
res.json(result);
} catch (error) {
console.error('Batch ingestion error:', error);
res.status(500).json({
message: "Batch ingestion failed",
error: error instanceof Error ? error.message : 'Unknown error'
});
}
});
// API Health Check endpoint
app.get("/api/health", async (req, res) => {
try {
const { checkAPIHealth } = await import('./api-health-check');
const healthStatus = await checkAPIHealth();
const overallHealthy = healthStatus.every(status => status.status !== 'error');
res.status(overallHealthy ? 200 : 503).json({
overall: overallHealthy ? 'healthy' : 'issues_detected',
services: healthStatus,
timestamp: new Date().toISOString()
});
} catch (error) {
res.status(500).json({
overall: 'error',
message: 'Health check failed',
error: error instanceof Error ? error.message : 'Unknown error'
});
}
});
// Generate embeddings using Nebius
app.post("/api/embeddings", async (req, res) => {
try {
const { input, model = 'text-embedding-ada-002' } = req.body;
if (!input) {
return res.status(400).json({ message: "Input text is required" });
}
console.log('Generating embeddings for input:', input.substring(0, 100) + '...');
const embeddings = await nebiusClient.createEmbeddings({ input, model });
console.log('Embeddings generated successfully');
res.json(embeddings);
} catch (error) {
console.error('Embeddings error:', error);
res.status(500).json({
message: "Embedding generation failed",
error: error instanceof Error ? error.message : 'Unknown error'
});
}
});
// Other routes...
app.get("/api/documents", async (req, res) => {
try {
const limit = parseInt(req.query.limit as string) || 50;
const offset = parseInt(req.query.offset as string) || 0;
const documents = await storage.getDocuments(limit, offset);
res.json(documents);
} catch (error) {
res.status(500).json({ message: "Failed to fetch documents" });
}
});
// Register document routes - enable uploads by default for all environments
// Hugging Face Spaces have /tmp storage which is suitable for uploads
const isHuggingFaceSpace = process.env.SPACE_ID || process.env.HF_SPACE_ID ||
process.env.HUGGINGFACE_SPACE_ID || process.env.HF_TOKEN || false;
const hasWritableStorage = process.env.NODE_ENV === 'production' ?
fs.existsSync('/tmp') :
true; // Development always has writable storage
// Force enable uploads for Hugging Face Spaces, otherwise check DISABLE_UPLOADS
const isDocumentUploadEnabled = isHuggingFaceSpace ? true : (process.env.DISABLE_UPLOADS !== 'true');
console.log('π Environment check:', {
NODE_ENV: process.env.NODE_ENV,
DISABLE_UPLOADS: process.env.DISABLE_UPLOADS,
isHuggingFaceSpace: !!isHuggingFaceSpace,
hasWritableStorage,
isDocumentUploadEnabled
});
if (isDocumentUploadEnabled) {
console.log('β
Document uploads enabled - full functionality available');
app.use("/api/documents", documentRoutes);
} else {
console.log('βΉοΈ Document uploads disabled - using fallback routes');
app.use("/api/documents", uploadFallbackRoutes);
}
const httpServer = createServer(app);
return httpServer;
} |