File size: 14,986 Bytes
10ac46e
 
 
 
 
c79a43d
10ac46e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f36d1f9
10ac46e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f36d1f9
10ac46e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c79a43d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10ac46e
 
c79a43d
10ac46e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
import fs from 'fs';
import path from 'path';
import { modalClient } from './modal-client';
import { nebiusClient } from './nebius-client';
import { FileProcessor } from './file-upload';
import { storage } from './storage';
import { type Document, type InsertDocument } from '@shared/schema';

export interface ProcessingResult {
  success: boolean;
  extractedText?: string;
  embeddings?: number[];
  modalTaskId?: string;
  error?: string;
  processingTime: number;
}

export interface BatchProcessingResult {
  success: boolean;
  processedCount: number;
  failedCount: number;
  results: Array<{
    documentId: number;
    success: boolean;
    extractedText?: string;
    embeddings?: number[];
    error?: string;
  }>;
  totalProcessingTime: number;
}

export class DocumentProcessor {
  private static instance: DocumentProcessor;

  static getInstance(): DocumentProcessor {
    if (!DocumentProcessor.instance) {
      DocumentProcessor.instance = new DocumentProcessor();
    }
    return DocumentProcessor.instance;
  }

  /**
   * Process a single document using Modal for heavy workloads
   */
  async processDocument(
    document: Document,
    operations: Array<'extract_text' | 'generate_embedding' | 'build_index'> = ['extract_text']
  ): Promise<ProcessingResult> {
    const startTime = Date.now();
    
    try {
      let extractedText = document.content;
      let embeddings: number[] | undefined;
      let modalTaskId: string | undefined;

      // Step 1: Extract text if needed (for PDFs and images)
      if (operations.includes('extract_text') && document.filePath) {
        const textResult = await this.extractText(document);
        if (textResult.success) {
          extractedText = textResult.extractedText || document.content;
          modalTaskId = textResult.modalTaskId;
        } else {
          console.warn(`Text extraction failed for document ${document.id}: ${textResult.error}`);
        }
      }

      // Step 2: Generate embeddings if requested
      if (operations.includes('generate_embedding') && extractedText) {
        const embeddingResult = await this.generateEmbeddings(extractedText);
        if (embeddingResult.success) {
          embeddings = embeddingResult.embeddings;
        } else {
          console.warn(`Embedding generation failed for document ${document.id}: ${embeddingResult.error}`);
        }
      }

      const processingTime = Date.now() - startTime;

      return {
        success: true,
        extractedText,
        embeddings,
        modalTaskId,
        processingTime
      };

    } catch (error) {
      const processingTime = Date.now() - startTime;
      return {
        success: false,
        error: error instanceof Error ? error.message : String(error),
        processingTime
      };
    }
  }

  /**
   * Process multiple documents in batch using Modal's distributed computing
   */
  async batchProcessDocuments(
    documents: Document[],
    operations: Array<'extract_text' | 'generate_embedding' | 'build_index'> = ['extract_text']
  ): Promise<BatchProcessingResult> {
    const startTime = Date.now();
    const results: BatchProcessingResult['results'] = [];
    
    try {
      // Separate documents by processing requirements
      const documentsForModal = documents.filter(doc => 
        doc.filePath && FileProcessor.requiresOCR(doc.mimeType || '')
      );
      
      const documentsForLocal = documents.filter(doc => 
        !doc.filePath || !FileProcessor.requiresOCR(doc.mimeType || '')
      );

      // Process Modal-required documents in batch
      if (documentsForModal.length > 0 && operations.includes('extract_text')) {
        try {
          const modalResults = await this.batchExtractTextModal(documentsForModal);
          results.push(...modalResults);
        } catch (error) {
          console.error('Modal batch processing failed:', error);
          // Fall back to individual processing
          for (const doc of documentsForModal) {
            const result = await this.processDocument(doc, operations);
            results.push({
              documentId: doc.id,
              success: result.success,
              extractedText: result.extractedText,
              embeddings: result.embeddings,
              error: result.error
            });
          }
        }
      }

      // Process local documents
      for (const doc of documentsForLocal) {
        const result = await this.processDocument(doc, operations);
        results.push({
          documentId: doc.id,
          success: result.success,
          extractedText: result.extractedText,
          embeddings: result.embeddings,
          error: result.error
        });
      }

      const totalProcessingTime = Date.now() - startTime;
      const successCount = results.filter(r => r.success).length;
      const failedCount = results.length - successCount;

      return {
        success: true,
        processedCount: successCount,
        failedCount,
        results,
        totalProcessingTime
      };

    } catch (error) {
      const totalProcessingTime = Date.now() - startTime;
      return {
        success: false,
        processedCount: 0,
        failedCount: documents.length,
        results: documents.map(doc => ({
          documentId: doc.id,
          success: false,
          error: error instanceof Error ? error.message : String(error)
        })),
        totalProcessingTime
      };
    }
  }

  /**
   * Extract text from a document using Modal for PDFs/images or direct reading for text files
   */
  private async extractText(document: Document): Promise<{
    success: boolean;
    extractedText?: string;
    modalTaskId?: string;
    error?: string;
  }> {
    if (!document.filePath) {
      return { success: true, extractedText: document.content };
    }

    const mimeType = document.mimeType || '';

    try {
      // For text files, read directly
      if (FileProcessor.isTextFile(mimeType)) {
        const content = await FileProcessor.readTextFile(document.filePath);
        return { success: true, extractedText: content };
      }

      // For PDFs and images, use Modal
      if (FileProcessor.requiresOCR(mimeType)) {
        return await this.extractTextModal(document);
      }

      // Fallback: return existing content
      return { success: true, extractedText: document.content };

    } catch (error) {
      return {
        success: false,
        error: error instanceof Error ? error.message : String(error)
      };
    }
  }

  /**
   * Extract text using Modal for OCR-required files
   */
  private async extractTextModal(document: Document): Promise<{
    success: boolean;
    extractedText?: string;
    modalTaskId?: string;
    error?: string;
  }> {
    try {
      if (!document.filePath) {
        throw new Error('No file path provided for Modal processing');
      }

      // Read file and convert to base64
      const fileBuffer = await fs.promises.readFile(document.filePath);
      const base64Content = fileBuffer.toString('base64');

      // Prepare document for Modal
      const modalDocument = {
        id: document.id.toString(),
        content: base64Content,
        contentType: document.mimeType || 'application/octet-stream'
      };

      // Call Modal extract-text endpoint
      const result = await modalClient.extractTextFromDocuments([modalDocument]);
      
      if (result.status === 'completed' && result.results?.length > 0) {
        const extractionResult = result.results[0];
        if (extractionResult.status === 'completed') {
          return {
            success: true,
            extractedText: extractionResult.extracted_text,
            modalTaskId: result.task_id
          };
        } else {
          return {
            success: false,
            error: extractionResult.error || 'Modal extraction failed'
          };
        }
      } else {
        return {
          success: false,
          error: result.error || 'Modal processing failed'
        };
      }

    } catch (error) {
      console.error('Modal text extraction failed:', error);
      return {
        success: false,
        error: error instanceof Error ? error.message : String(error)
      };
    }
  }

  /**
   * Batch extract text using Modal
   */
  private async batchExtractTextModal(documents: Document[]): Promise<Array<{
    documentId: number;
    success: boolean;
    extractedText?: string;
    error?: string;
  }>> {
    const modalDocuments = await Promise.all(
      documents.map(async (doc) => {
        if (!doc.filePath) return null;
        
        try {
          const fileBuffer = await fs.promises.readFile(doc.filePath);
          return {
            id: doc.id.toString(),
            content: fileBuffer.toString('base64'),
            contentType: doc.mimeType || 'application/octet-stream'
          };
        } catch (error) {
          console.error(`Failed to read file for document ${doc.id}:`, error);
          return null;
        }
      })
    );

    const validDocuments = modalDocuments.filter(doc => doc !== null) as any[];
    
    if (validDocuments.length === 0) {
      return documents.map(doc => ({
        documentId: doc.id,
        success: false,
        error: 'No valid documents for processing'
      }));
    }

    try {
      const batchResult = await modalClient.batchProcessDocuments({
        documents: validDocuments,
        modelName: 'text-embedding-3-small',
        batchSize: Math.min(validDocuments.length, 10)
      });

      if (batchResult.status === 'completed' && batchResult.extraction_results) {
        return batchResult.extraction_results.map((result: any) => ({
          documentId: parseInt(result.id),
          success: result.status === 'completed',
          extractedText: result.extracted_text,
          error: result.error
        }));
      } else {
        throw new Error(batchResult.error || 'Batch processing failed');
      }

    } catch (error) {
      console.error('Modal batch processing failed:', error);
      return documents.map(doc => ({
        documentId: doc.id,
        success: false,
        error: error instanceof Error ? error.message : String(error)
      }));
    }
  }

  /**
   * Generate embeddings using Nebius AI
   */
  private async generateEmbeddings(text: string): Promise<{
    success: boolean;
    embeddings?: number[];
    error?: string;
  }> {
    try {
      // Truncate text if too long (most embedding models have token limits)
      const maxLength = 8000; // Conservative limit
      const truncatedText = text.length > maxLength ? text.substring(0, maxLength) : text;
      
      const result = await nebiusClient.generateEmbeddings(truncatedText);
      
      if (result.success && result.embeddings) {
        return {
          success: true,
          embeddings: result.embeddings
        };
      } else {
        return {
          success: false,
          error: result.error || 'Embedding generation failed'
        };
      }

    } catch (error) {
      return {
        success: false,
        error: error instanceof Error ? error.message : String(error)
      };
    }
  }

  /**
   * Build vector index using Modal
   */
  async buildVectorIndex(
    documents: Document[],
    indexName = 'research_papers_clean_v2'
  ): Promise<{
    success: boolean;
    indexName?: string;
    documentCount?: number;
    error?: string;
  }> {
    try {
      const modalDocuments = documents.map(doc => ({
        id: doc.id.toString(),
        content: doc.content,
        title: doc.title,
        source: doc.source
      }));

      const result = await modalClient.buildVectorIndex(modalDocuments, {
        indexName,
        dimension: 1536, // Standard OpenAI embedding dimension
        indexType: 'IVF',
        nlist: Math.min(100, Math.max(10, Math.floor(documents.length / 10)))
      });

      if (result.status === 'completed') {
        return {
          success: true,
          indexName: result.index_name,
          documentCount: result.document_count
        };
      } else {
        return {
          success: false,
          error: result.error || 'Index building failed'
        };
      }

    } catch (error) {
      return {
        success: false,
        error: error instanceof Error ? error.message : String(error)
      };
    }
  }

  /**
   * Search vector index using Modal
   */
  async searchVectorIndex(
    query: string,
    indexName = 'research_papers_clean_v2',
    maxResults = 10
  ): Promise<{
    success: boolean;
    results?: Array<{
      id: string;
      title: string;
      content: string;
      source: string;
      relevanceScore: number;
      rank: number;
      snippet: string;
    }>;
    error?: string;
  }> {
    try {
      const result = await modalClient.vectorSearch(query, indexName, maxResults);
      if (result.status === 'completed') {
        // Enrich vector search results with complete document data from database
        const enrichedResults = await Promise.all(
          result.results.map(async (vectorResult: any) => {
            try {
              // Get complete document data from database using the ID
              const dbDocument = await storage.getDocument(parseInt(vectorResult.id));
              if (dbDocument) {
                // Merge vector search metadata with database document
                // Ensure the URL field is preserved from the database
                const enriched = {
                  id: dbDocument.id,
                  title: dbDocument.title,
                  content: dbDocument.content,
                  source: dbDocument.source,
                  sourceType: dbDocument.sourceType,
                  url: dbDocument.url, // Explicitly preserve URL
                  metadata: dbDocument.metadata,
                  createdAt: dbDocument.createdAt,
                  // Add vector search specific fields
                  relevanceScore: vectorResult.relevanceScore,
                  rank: vectorResult.rank,
                  snippet: vectorResult.snippet || dbDocument.content.substring(0, 200) + '...'
                };
                return enriched;
              } else {
                // Fallback to vector result if database document not found
                return vectorResult;
              }
            } catch (error) {
              console.warn(`Failed to enrich vector result for ID ${vectorResult.id}:`, error);
              return vectorResult;
            }
          })
        );

        return {
          success: true,
          results: enrichedResults
        };
      } else {
        return {
          success: false,
          error: result.error || 'Vector search failed'
        };
      }

    } catch (error) {
      return {
        success: false,
        error: error instanceof Error ? error.message : String(error)
      };
    }
  }
}

export const documentProcessor = DocumentProcessor.getInstance();