File size: 22,659 Bytes
7c012de |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 |
"""
Knowledge Base Browser - A Gradio Custom Component for RAG applications
"""
from __future__ import annotations
import json
import os
from pathlib import Path
from typing import Any, Callable, Dict, List, Optional, Union
import gradio as gr
from gradio.components.base import Component
from gradio.events import Events
from .retriever import KnowledgeRetriever
from gradio.events import Dependency
class KnowledgeBrowser(Component):
"""
A custom Gradio component that provides a knowledge base browser interface
for retrieval-augmented generation use cases.
"""
EVENTS = [
Events.change,
Events.submit,
Events.select,
]
def __init__(
self,
query: str = "",
results: Optional[List[Dict[str, Any]]] = None,
index_path: str = "./data",
search_type: str = "semantic",
max_results: int = 10,
label: Optional[str] = None,
every: Optional[float] = None,
show_label: Optional[bool] = None,
container: bool = True,
scale: Optional[int] = None,
min_width: int = 160,
visible: bool = True,
elem_id: Optional[str] = None,
elem_classes: Optional[List[str] | str] = None,
render: bool = True,
**kwargs,
):
"""
Parameters:
query: Initial search query
results: Pre-loaded search results
index_path: Path to document index
search_type: Type of search ("semantic", "keyword", "hybrid")
max_results: Maximum number of results to return
label: Component label
every: Timer interval for updates
show_label: Whether to show the label
container: Whether to place component in container
scale: Relative width compared to adjacent components
min_width: Minimum pixel width
visible: Whether component is visible
elem_id: Optional HTML element ID
elem_classes: Optional HTML element classes
render: Whether to render component immediately
"""
self.query = query
self.results = results or []
self.search_type = search_type
self.max_results = max_results
# Initialize the retriever
self.retriever = KnowledgeRetriever(index_path)
super().__init__(
label=label,
every=every,
show_label=show_label,
container=container,
scale=scale,
min_width=min_width,
visible=visible,
elem_id=elem_id,
elem_classes=elem_classes,
render=render,
**kwargs,
)
def preprocess(self, payload: Dict[str, Any]) -> Dict[str, Any]:
"""
Preprocesses the component's payload to convert it to a format expected by the backend.
"""
return {
"query": payload.get("query", ""),
"search_type": payload.get("search_type", self.search_type),
"max_results": payload.get("max_results", self.max_results),
"filters": payload.get("filters", {}),
}
def postprocess(self, value: Dict[str, Any]) -> Dict[str, Any]:
"""
Postprocesses the component's value to convert it to a format expected by the frontend.
"""
if value is None:
return {"query": self.query, "results": self.results}
return {
"query": value.get("query", self.query),
"results": value.get("results", self.results),
"search_type": value.get("search_type", self.search_type),
"total_count": value.get("total_count", 0),
"search_time": value.get("search_time", 0),
}
def api_info(self) -> Dict[str, Any]:
"""
Returns the API information for this component.
"""
return {
"info": {
"type": "object",
"properties": {
"query": {"type": "string"},
"results": {"type": "array"},
"search_type": {"type": "string"},
"total_count": {"type": "number"},
"search_time": {"type": "number"},
},
},
"serialized_info": False,
}
def example_inputs(self) -> Any:
"""
Returns example inputs for this component.
"""
return {
"query": "retrieval augmented generation",
"search_type": "semantic",
"max_results": 5,
}
def search(self, query: str, search_type: str = None, max_results: int = None) -> Dict[str, Any]:
"""
Performs a search using the knowledge retriever.
"""
search_type = search_type or self.search_type
max_results = max_results or self.max_results
results = self.retriever.search(
query=query,
search_type=search_type,
k=max_results
)
return {
"query": query,
"results": results["documents"],
"search_type": search_type,
"total_count": len(results["documents"]),
"search_time": results["search_time"],
}
@property
def skip_api(self):
return False
from typing import Callable, Literal, Sequence, Any, TYPE_CHECKING
from gradio.blocks import Block
if TYPE_CHECKING:
from gradio.components import Timer
from gradio.components.base import Component
def change(self,
fn: Callable[..., Any] | None = None,
inputs: Block | Sequence[Block] | set[Block] | None = None,
outputs: Block | Sequence[Block] | None = None,
api_name: str | None | Literal[False] = None,
scroll_to_output: bool = False,
show_progress: Literal["full", "minimal", "hidden"] = "full",
show_progress_on: Component | Sequence[Component] | None = None,
queue: bool | None = None,
batch: bool = False,
max_batch_size: int = 4,
preprocess: bool = True,
postprocess: bool = True,
cancels: dict[str, Any] | list[dict[str, Any]] | None = None,
every: Timer | float | None = None,
trigger_mode: Literal["once", "multiple", "always_last"] | None = None,
js: str | Literal[True] | None = None,
concurrency_limit: int | None | Literal["default"] = "default",
concurrency_id: str | None = None,
show_api: bool = True,
) -> Dependency:
"""
Parameters:
fn: the function to call when this event is triggered. Often a machine learning model's prediction function. Each parameter of the function corresponds to one input component, and the function should return a single value or a tuple of values, with each element in the tuple corresponding to one output component.
inputs: list of gradio.components to use as inputs. If the function takes no inputs, this should be an empty list.
outputs: list of gradio.components to use as outputs. If the function returns no outputs, this should be an empty list.
api_name: defines how the endpoint appears in the API docs. Can be a string, None, or False. If False, the endpoint will not be exposed in the api docs. If set to None, will use the functions name as the endpoint route. If set to a string, the endpoint will be exposed in the api docs with the given name.
scroll_to_output: if True, will scroll to output component on completion
show_progress: how to show the progress animation while event is running: "full" shows a spinner which covers the output component area as well as a runtime display in the upper right corner, "minimal" only shows the runtime display, "hidden" shows no progress animation at all
show_progress_on: Component or list of components to show the progress animation on. If None, will show the progress animation on all of the output components.
queue: if True, will place the request on the queue, if the queue has been enabled. If False, will not put this event on the queue, even if the queue has been enabled. If None, will use the queue setting of the gradio app.
batch: if True, then the function should process a batch of inputs, meaning that it should accept a list of input values for each parameter. The lists should be of equal length (and be up to length `max_batch_size`). The function is then *required* to return a tuple of lists (even if there is only 1 output component), with each list in the tuple corresponding to one output component.
max_batch_size: maximum number of inputs to batch together if this is called from the queue (only relevant if batch=True)
preprocess: if False, will not run preprocessing of component data before running 'fn' (e.g. leaving it as a base64 string if this method is called with the `Image` component).
postprocess: if False, will not run postprocessing of component data before returning 'fn' output to the browser.
cancels: a list of other events to cancel when this listener is triggered. For example, setting cancels=[click_event] will cancel the click_event, where click_event is the return value of another components .click method. Functions that have not yet run (or generators that are iterating) will be cancelled, but functions that are currently running will be allowed to finish.
every: continously calls `value` to recalculate it if `value` is a function (has no effect otherwise). Can provide a Timer whose tick resets `value`, or a float that provides the regular interval for the reset Timer.
trigger_mode: if "once" (default for all events except `.change()`) would not allow any submissions while an event is pending. If set to "multiple", unlimited submissions are allowed while pending, and "always_last" (default for `.change()` and `.key_up()` events) would allow a second submission after the pending event is complete.
js: optional frontend js method to run before running 'fn'. Input arguments for js method are values of 'inputs' and 'outputs', return should be a list of values for output components.
concurrency_limit: if set, this is the maximum number of this event that can be running simultaneously. Can be set to None to mean no concurrency_limit (any number of this event can be running simultaneously). Set to "default" to use the default concurrency limit (defined by the `default_concurrency_limit` parameter in `Blocks.queue()`, which itself is 1 by default).
concurrency_id: if set, this is the id of the concurrency group. Events with the same concurrency_id will be limited by the lowest set concurrency_limit.
show_api: whether to show this event in the "view API" page of the Gradio app, or in the ".view_api()" method of the Gradio clients. Unlike setting api_name to False, setting show_api to False will still allow downstream apps as well as the Clients to use this event. If fn is None, show_api will automatically be set to False.
"""
...
def submit(self,
fn: Callable[..., Any] | None = None,
inputs: Block | Sequence[Block] | set[Block] | None = None,
outputs: Block | Sequence[Block] | None = None,
api_name: str | None | Literal[False] = None,
scroll_to_output: bool = False,
show_progress: Literal["full", "minimal", "hidden"] = "full",
show_progress_on: Component | Sequence[Component] | None = None,
queue: bool | None = None,
batch: bool = False,
max_batch_size: int = 4,
preprocess: bool = True,
postprocess: bool = True,
cancels: dict[str, Any] | list[dict[str, Any]] | None = None,
every: Timer | float | None = None,
trigger_mode: Literal["once", "multiple", "always_last"] | None = None,
js: str | Literal[True] | None = None,
concurrency_limit: int | None | Literal["default"] = "default",
concurrency_id: str | None = None,
show_api: bool = True,
) -> Dependency:
"""
Parameters:
fn: the function to call when this event is triggered. Often a machine learning model's prediction function. Each parameter of the function corresponds to one input component, and the function should return a single value or a tuple of values, with each element in the tuple corresponding to one output component.
inputs: list of gradio.components to use as inputs. If the function takes no inputs, this should be an empty list.
outputs: list of gradio.components to use as outputs. If the function returns no outputs, this should be an empty list.
api_name: defines how the endpoint appears in the API docs. Can be a string, None, or False. If False, the endpoint will not be exposed in the api docs. If set to None, will use the functions name as the endpoint route. If set to a string, the endpoint will be exposed in the api docs with the given name.
scroll_to_output: if True, will scroll to output component on completion
show_progress: how to show the progress animation while event is running: "full" shows a spinner which covers the output component area as well as a runtime display in the upper right corner, "minimal" only shows the runtime display, "hidden" shows no progress animation at all
show_progress_on: Component or list of components to show the progress animation on. If None, will show the progress animation on all of the output components.
queue: if True, will place the request on the queue, if the queue has been enabled. If False, will not put this event on the queue, even if the queue has been enabled. If None, will use the queue setting of the gradio app.
batch: if True, then the function should process a batch of inputs, meaning that it should accept a list of input values for each parameter. The lists should be of equal length (and be up to length `max_batch_size`). The function is then *required* to return a tuple of lists (even if there is only 1 output component), with each list in the tuple corresponding to one output component.
max_batch_size: maximum number of inputs to batch together if this is called from the queue (only relevant if batch=True)
preprocess: if False, will not run preprocessing of component data before running 'fn' (e.g. leaving it as a base64 string if this method is called with the `Image` component).
postprocess: if False, will not run postprocessing of component data before returning 'fn' output to the browser.
cancels: a list of other events to cancel when this listener is triggered. For example, setting cancels=[click_event] will cancel the click_event, where click_event is the return value of another components .click method. Functions that have not yet run (or generators that are iterating) will be cancelled, but functions that are currently running will be allowed to finish.
every: continously calls `value` to recalculate it if `value` is a function (has no effect otherwise). Can provide a Timer whose tick resets `value`, or a float that provides the regular interval for the reset Timer.
trigger_mode: if "once" (default for all events except `.change()`) would not allow any submissions while an event is pending. If set to "multiple", unlimited submissions are allowed while pending, and "always_last" (default for `.change()` and `.key_up()` events) would allow a second submission after the pending event is complete.
js: optional frontend js method to run before running 'fn'. Input arguments for js method are values of 'inputs' and 'outputs', return should be a list of values for output components.
concurrency_limit: if set, this is the maximum number of this event that can be running simultaneously. Can be set to None to mean no concurrency_limit (any number of this event can be running simultaneously). Set to "default" to use the default concurrency limit (defined by the `default_concurrency_limit` parameter in `Blocks.queue()`, which itself is 1 by default).
concurrency_id: if set, this is the id of the concurrency group. Events with the same concurrency_id will be limited by the lowest set concurrency_limit.
show_api: whether to show this event in the "view API" page of the Gradio app, or in the ".view_api()" method of the Gradio clients. Unlike setting api_name to False, setting show_api to False will still allow downstream apps as well as the Clients to use this event. If fn is None, show_api will automatically be set to False.
"""
...
def select(self,
fn: Callable[..., Any] | None = None,
inputs: Block | Sequence[Block] | set[Block] | None = None,
outputs: Block | Sequence[Block] | None = None,
api_name: str | None | Literal[False] = None,
scroll_to_output: bool = False,
show_progress: Literal["full", "minimal", "hidden"] = "full",
show_progress_on: Component | Sequence[Component] | None = None,
queue: bool | None = None,
batch: bool = False,
max_batch_size: int = 4,
preprocess: bool = True,
postprocess: bool = True,
cancels: dict[str, Any] | list[dict[str, Any]] | None = None,
every: Timer | float | None = None,
trigger_mode: Literal["once", "multiple", "always_last"] | None = None,
js: str | Literal[True] | None = None,
concurrency_limit: int | None | Literal["default"] = "default",
concurrency_id: str | None = None,
show_api: bool = True,
) -> Dependency:
"""
Parameters:
fn: the function to call when this event is triggered. Often a machine learning model's prediction function. Each parameter of the function corresponds to one input component, and the function should return a single value or a tuple of values, with each element in the tuple corresponding to one output component.
inputs: list of gradio.components to use as inputs. If the function takes no inputs, this should be an empty list.
outputs: list of gradio.components to use as outputs. If the function returns no outputs, this should be an empty list.
api_name: defines how the endpoint appears in the API docs. Can be a string, None, or False. If False, the endpoint will not be exposed in the api docs. If set to None, will use the functions name as the endpoint route. If set to a string, the endpoint will be exposed in the api docs with the given name.
scroll_to_output: if True, will scroll to output component on completion
show_progress: how to show the progress animation while event is running: "full" shows a spinner which covers the output component area as well as a runtime display in the upper right corner, "minimal" only shows the runtime display, "hidden" shows no progress animation at all
show_progress_on: Component or list of components to show the progress animation on. If None, will show the progress animation on all of the output components.
queue: if True, will place the request on the queue, if the queue has been enabled. If False, will not put this event on the queue, even if the queue has been enabled. If None, will use the queue setting of the gradio app.
batch: if True, then the function should process a batch of inputs, meaning that it should accept a list of input values for each parameter. The lists should be of equal length (and be up to length `max_batch_size`). The function is then *required* to return a tuple of lists (even if there is only 1 output component), with each list in the tuple corresponding to one output component.
max_batch_size: maximum number of inputs to batch together if this is called from the queue (only relevant if batch=True)
preprocess: if False, will not run preprocessing of component data before running 'fn' (e.g. leaving it as a base64 string if this method is called with the `Image` component).
postprocess: if False, will not run postprocessing of component data before returning 'fn' output to the browser.
cancels: a list of other events to cancel when this listener is triggered. For example, setting cancels=[click_event] will cancel the click_event, where click_event is the return value of another components .click method. Functions that have not yet run (or generators that are iterating) will be cancelled, but functions that are currently running will be allowed to finish.
every: continously calls `value` to recalculate it if `value` is a function (has no effect otherwise). Can provide a Timer whose tick resets `value`, or a float that provides the regular interval for the reset Timer.
trigger_mode: if "once" (default for all events except `.change()`) would not allow any submissions while an event is pending. If set to "multiple", unlimited submissions are allowed while pending, and "always_last" (default for `.change()` and `.key_up()` events) would allow a second submission after the pending event is complete.
js: optional frontend js method to run before running 'fn'. Input arguments for js method are values of 'inputs' and 'outputs', return should be a list of values for output components.
concurrency_limit: if set, this is the maximum number of this event that can be running simultaneously. Can be set to None to mean no concurrency_limit (any number of this event can be running simultaneously). Set to "default" to use the default concurrency limit (defined by the `default_concurrency_limit` parameter in `Blocks.queue()`, which itself is 1 by default).
concurrency_id: if set, this is the id of the concurrency group. Events with the same concurrency_id will be limited by the lowest set concurrency_limit.
show_api: whether to show this event in the "view API" page of the Gradio app, or in the ".view_api()" method of the Gradio clients. Unlike setting api_name to False, setting show_api to False will still allow downstream apps as well as the Clients to use this event. If fn is None, show_api will automatically be set to False.
"""
...
# Export the component
__all__ = ["KnowledgeBrowser"] |