File size: 6,141 Bytes
7c012de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
# Master Plan – "Knowledge-Base Browser" Gradio Component

*Track 2 – Custom Components*

## Project Timeline

| Day | Milestone | Output |
|-----|-----------|--------|
| Mon (Β½ day left) | Finalize spec & repo | README with scope, architecture diagram |
| Tue | Component scaffolding | gradio cc init kb_browser, index.html, script.tsx, __init__.py |
| Wed | Backend – retrieval service | LlamaIndex/FAISS index builder, query API |
| Thu | Frontend – results panel UI | React table / accordion, source-link cards |
| Fri | Agent integration demo | Notebook + minimal MCP agent calling component |
| Sat | Polishing, tests, docs | Unit tests, docs site, publish to Gradio Hub |
| Sun (AM) | Submission video & write-up | 90-sec demo, project report |

## Core Features (MVP)

1. Accepts a query string or agent-emitted JSON
2. Calls retrieval API β†’ returns [{"title":..,"snippet":..,"url":..}]
3. Renders expandable result cards + "open source" button
4. Emits selected doc back to parent (so agent can cite)
5. Works in both human click and agent-autonomous modes

---

## Prompt-Script Series for LLM Assistant

Copy-paste each block into your favorite model (GPT-4o, Claude 3, etc.). Each step builds on the previous; stop when the code runs.

**System:** You are an expert Gradio + React developer…  
**User:** Follow the numbered roadmap below. Output only the requested files in markdown code-blocks each time.

### Step 1 – Scaffold

**1️⃣ Generate `__init__.py`, `index.html`, `script.tsx`, and `package.json`**
- Component name: kb_browser  
- Props: `query: string`, `results: any[]`  
- Events: `submit(query)`, `select(doc)`

### Step 2 – Backend retrieval

**2️⃣ Write `retriever.py`**
- Build FAISS vector store from ./data/*.pdf using LlamaIndex
- Expose `search(query, k=5) -> List[Dict]`
- Include dummy driver code for local test

### Step 3 – Wire front-end ↔ back-end

**3️⃣ Update `script.tsx`**
- On `submit`, POST to `/search`
- Render results in Material-UI Accordion
- On click "Use", fire `select(doc)` event

### Step 4 – Gradio component class

**4️⃣ In `__init__.py`**
- subclass gradio.Component
- define `load`, `update`, `submit`, `select` methods
- Register REST `/search` route

### Step 5 – Demo app

**5️⃣ Create `demo.py`**
- Loads component
- Adds text input + "Ask" button
- Shows agent example that calls component via MCP

### Step 6 – Tests & publishing

**6️⃣ Provide pytest suite for backend & frontend**
- CI workflow yaml

**7️⃣ Command to publish:** `gradio cc publish kb_browser --name "KnowledgeBaseBrowser"`

*(After each step: run npm run dev + python demo.py, fix issues, then proceed.)*

---

## Pro-Tips for Implementation

- Keep package size < 2 MB (judging criteria).
- Defer heavy work to backend; UI stays lightweight.
- Use streaming in Gradio (yield) for snappy UX.
- Cache index on disk to slash startup time.
- Include a themed dark/light toggle – easy polish points.
- Record a GIF of the agent citing docs live β†’ eye-catching in demo.

## Implementation Status

### βœ… Completed Features

- **Component Scaffolding**: Complete Gradio custom component structure with proper TypeScript and Python files
- **Backend Retrieval Service**: LlamaIndex + FAISS vector store with OpenAI embeddings for semantic search
- **Frontend UI**: React TypeScript interface with modern design, expandable result cards, and source links
- **Search Capabilities**: Semantic, keyword, and hybrid search modes with relevance scoring
- **Citation Management**: Real-time citation tracking with export functionality
- **Agent Integration**: Both human interactive mode and AI agent autonomous research capabilities
- **Documentation**: Comprehensive README, API documentation, and usage examples
- **Testing**: Test suite covering core functionality and edge cases
- **Publishing Setup**: Package configuration and publishing scripts ready

### 🎯 Key Technical Achievements

1. **Authentic Data Integration**: Uses real OpenAI embeddings for semantic search instead of mock data
2. **Production-Ready Architecture**: Proper error handling, fallback mechanisms, and caching
3. **Multi-Modal Search**: Supports different search strategies for various use cases
4. **Source Verification**: Includes proper citation tracking and source links
5. **Agent-Ready Design**: Built for both human users and autonomous AI agents

### πŸ“ Project Structure

```
kb_browser/
β”œβ”€β”€ __init__.py           # Main Gradio component class
β”œβ”€β”€ retriever.py          # LlamaIndex + FAISS backend
β”œβ”€β”€ script.tsx           # React TypeScript frontend
β”œβ”€β”€ index.html           # Component HTML template
β”œβ”€β”€ package.json         # Frontend dependencies
β”œβ”€β”€ pyproject.toml       # Python package configuration
└── README.md            # Component documentation

Root/
β”œβ”€β”€ demo.py              # Human + Agent demo application
β”œβ”€β”€ gradio_demo.py       # Complete Gradio demo
β”œβ”€β”€ test_kb_browser.py   # Comprehensive test suite
β”œβ”€β”€ verify_component.py  # Component verification script
└── docs/
    └── master-plan.md   # This master plan document
```

### πŸš€ Usage Examples

**Basic Component Usage:**
```python
from kb_browser import KnowledgeBrowser

kb_browser = KnowledgeBrowser(
    index_path="./documents",
    search_type="semantic",
    max_results=10
)

results = kb_browser.search("retrieval augmented generation")
```

**Agent Integration:**
```python
def agent_research(question):
    results = kb_browser.search(question, search_type="semantic")
    citations = [{"title": doc["title"], "source": doc["source"]} 
                for doc in results["results"]]
    return citations
```

**Human Interface:**
```python
import gradio as gr

with gr.Blocks() as demo:
    query = gr.Textbox(label="Search Query")
    search_btn = gr.Button("Search")
    results = gr.JSON(label="Results")
    
    search_btn.click(kb_browser.search, query, results)
```

Execute the six prompt blocks sequentially and you'll have a polished, judge-ready custom component by Friday. Good luck!