File size: 20,100 Bytes
bfbe43b
 
f5556f2
 
 
bfbe43b
 
 
f5556f2
 
 
bfbe43b
 
f5556f2
 
c96d7dc
f5556f2
c96d7dc
f5556f2
 
 
 
 
 
 
 
 
 
 
 
24425b1
 
 
f5556f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c96d7dc
 
 
 
f5556f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c96d7dc
 
f5556f2
 
 
c96d7dc
39781c3
 
 
 
c96d7dc
 
 
 
 
 
f5556f2
 
 
 
 
 
 
 
 
 
 
 
 
 
39781c3
f5556f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c96d7dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f5556f2
 
 
c96d7dc
f5556f2
c96d7dc
 
 
 
 
 
 
 
f5556f2
c96d7dc
 
f5556f2
 
c96d7dc
f5556f2
c96d7dc
 
 
f5556f2
 
c96d7dc
 
 
 
 
 
 
f5556f2
 
c96d7dc
 
f5556f2
 
c96d7dc
f5556f2
c96d7dc
 
f5556f2
c96d7dc
 
 
f5556f2
 
c96d7dc
39781c3
c96d7dc
39781c3
 
c96d7dc
 
 
39781c3
 
c96d7dc
39781c3
c96d7dc
 
 
39781c3
 
c96d7dc
39781c3
c96d7dc
 
39781c3
 
 
f5556f2
 
 
39781c3
 
 
 
f5556f2
 
 
 
c96d7dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f5556f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c96d7dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
484ea5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c96d7dc
 
 
 
 
f5556f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
39781c3
 
 
 
 
 
 
f5556f2
 
39781c3
 
 
 
 
f5556f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
---
title: KnowledgeBridge
emoji: πŸ“š
colorFrom: yellow
colorTo: red
sdk: docker
pinned: false
license: mit
short_description: 'A sophisticated AI-powered knowledge retrieval and analysis '
tags:
  - agent-demo-track
---

# KnowledgeBridge

πŸš€ **An AI-Enhanced Knowledge Discovery Platform with Document Processing & Vector Search**

A production-ready AI-powered knowledge retrieval system featuring real document upload, OCR processing, vector embeddings, and distributed computing for large-scale document analysis and semantic search.

![Security Status](https://img.shields.io/badge/Security-Hardened-green)
![TypeScript](https://img.shields.io/badge/TypeScript-100%25-blue)
![AI Models](https://img.shields.io/badge/AI-Nebius%20DeepSeek-purple)
![License](https://img.shields.io/badge/License-MIT-yellow)

## 🎯 Hackathon Submission

**πŸ€– Track 3: Agentic Demo Showcase**

**Submitted to**: [Hugging Face Agents-MCP-Hackathon](https://huggingface.co/Agents-MCP-Hackathon)

**Live Demo**: [Try KnowledgeBridge on Hugging Face Spaces](https://huggingface.co/spaces/Agents-MCP-Hackathon/KnowledgeBridge

[Video Link]{https://drive.google.com/drive/folders/1iQafhb7PmO6zWW-JDq1eWGo8KN10Ctdf?usp=sharing}

### **πŸš€ "Show us the most incredible things that your agents can do!"**

KnowledgeBridge demonstrates sophisticated AI agent orchestration through multi-modal knowledge discovery, intelligent query enhancement, and autonomous research synthesis.

## πŸ€– Agentic Capabilities Showcase

### 🧠 **Multi-Agent Orchestration**
- **Coordinated Search Agents**: Simultaneous deployment across GitHub, Wikipedia, ArXiv, and web sources
- **Intelligent Load Balancing**: Agents dynamically distribute workload based on query type and source availability
- **Fallback Agent Strategy**: Backup agents activate when primary sources fail or timeout
- **Real-Time Coordination**: Agents communicate results and adapt search strategies collaboratively

### πŸ” **Query Enhancement Agents**
- **Intent Recognition Agents**: AI agents analyze user intent and suggest optimal search strategies
- **Semantic Expansion Agents**: Agents enhance queries with related terms and concepts
- **Context-Aware Agents**: Agents consider previous searches and user preferences
- **Multi-Modal Query Agents**: Agents adapt search approach based on content type (code, academic, general)

### πŸ“Š **Document Processing & Analysis Agents**
- **OCR Processing Agents**: Autonomous PDF and image text extraction using Modal's distributed Tesseract OCR
- **Vector Embedding Agents**: Generate 1536-dimensional embeddings and build FAISS indices at scale
- **Batch Processing Agents**: Coordinate distributed document processing across Modal compute nodes
- **Research Synthesis Agents**: AI agents combine insights from multiple sources into coherent analysis
- **Quality Assessment Agents**: Agents evaluate source credibility and content relevance

### πŸ›‘οΈ **Security & Validation Agents**
- **URL Validation Agents**: Intelligent agents verify link accessibility and content authenticity
- **Rate Limiting Agents**: Protective agents prevent API abuse (100 requests/15min, 10/min for sensitive endpoints)
- **Input Sanitization Agents**: Security agents validate and clean all user inputs
- **Error Recovery Agents**: Resilient agents handle failures gracefully and maintain system stability

### 🌐 **Intelligent Integration Agents**
- **ArXiv Academic Agents**: Specialized agents for academic paper validation and retrieval
- **GitHub Repository Agents**: Code-focused agents with author filtering and relevance scoring
- **Wikipedia Knowledge Agents**: Authoritative content agents with intelligent caching strategies
- **Cross-Platform Synthesis Agents**: Agents that combine and rank results across all sources

## πŸ—οΈ Technical Architecture

### **Frontend Stack**
- **React 18** with TypeScript for type-safe development
- **Wouter Router** for lightweight client-side routing
- **TanStack Query** for efficient data fetching and caching
- **Radix UI + Tailwind CSS** for accessible, modern components
- **Framer Motion** for smooth animations and transitions

### **Backend Stack**
- **Node.js + Express** with comprehensive middleware
- **SQLite Database** with real document storage and metadata
- **File Upload System** supporting PDFs, images, text files (50MB each)
- **Express Rate Limit** for API protection
- **Helmet.js** for security headers

### **AI & Distributed Computing**
- **Nebius AI Platform** - Advanced LLM and embedding capabilities
  - **DeepSeek-R1-0528** for chat completions and document analysis
  - **BAAI/bge-en-icl** for embedding generation (1536 dimensions)
  - **Query Enhancement** and intelligent content analysis
- **Modal.com Platform** - Production heavy workloads
  - **OCR Processing**: PDF/image text extraction with PyPDF2 + Tesseract
  - **FAISS Vector Indexing**: Distributed index building for large document collections
  - **High-Performance Search**: Sub-second similarity search across millions of vectors
  - **Batch Processing**: Concurrent document processing with 2-4GB memory per task
  - **Persistent Storage**: Modal volumes for cross-session index storage

## πŸš€ Quick Start

### **Environment Configuration**

Create a `.env` file in the project root:

```bash
# Nebius AI Configuration (Required)
NEBIUS_API_KEY=your_nebius_api_key_here

# Modal Configuration (Optional - for advanced processing)
MODAL_TOKEN_ID=your_modal_token_id
MODAL_TOKEN_SECRET=your_modal_token_secret
MODAL_BASE_URL=https://fazeelusmani18--knowledgebridge-main-fastapi-app.modal.run

# GitHub Configuration (Optional - for repository search)
GITHUB_TOKEN=your_github_token_here

# Node Environment
NODE_ENV=development
```

### **Development Setup**

```bash
# Install dependencies
npm install

# Start development server
npm run dev

# Build for production
npm run build

# Type checking
npm run check
```

The application will be available at `http://localhost:5000`

## 🎯 Usage Guide

### **Document Upload & Processing**
1. **Upload Documents**: Drag and drop PDFs, images, text files (up to 50MB each)
2. **Automatic Processing**: OCR extraction via Modal for PDFs/images, embedding generation
3. **Status Tracking**: Monitor processing status (pending β†’ processing β†’ completed)
4. **Batch Operations**: Process multiple documents and build vector indices

### **Vector Search**
1. **Semantic Search**: Query your processed documents using vector similarity
2. **Index Management**: Build FAISS indices from your document collections
3. **Performance Comparison**: Side-by-side vector vs. keyword search results
4. **Relevance Scoring**: AI-powered relevance scores with detailed metrics

### **AI-Enhanced Search**
1. **Traditional Search**: Natural language queries across web sources
2. **Query Enhancement**: AI-powered query improvement suggestions
3. **Multi-Source Results**: Combined results from GitHub, Wikipedia, ArXiv
4. **Research Synthesis**: AI analysis and synthesis of search results

### **Knowledge Management**
- **Document Library**: Manage uploaded documents with metadata
- **Citation Generation**: Export results in multiple academic formats
- **Knowledge Graph**: Interactive visualization of document relationships

## πŸ”§ API Reference

### **Document Management**
```typescript
POST /api/documents/upload
// Multipart form data with files[]
// Optional: title, source

GET /api/documents/list
// Query params: limit, offset, sourceType, processingStatus

POST /api/documents/process/:id
{
  operations: ["extract_text", "generate_embedding", "build_index"];
  indexName?: string;
}

POST /api/documents/process/batch
{
  documentIds: number[];
  operations: ["extract_text", "generate_embedding"];
  indexName?: string;
}

DELETE /api/documents/:id
// Deletes document and associated file
```

### **Vector Search & Indexing**
```typescript
POST /api/documents/search/vector
{
  query: string;
  indexName?: string;
  maxResults?: number;
}

POST /api/documents/index/build
{
  documentIds?: number[]; // Optional: specific documents
  indexName?: string;
}

GET /api/documents/status/:id
// Returns processing status and metadata
```

### **Traditional Search & AI**
```typescript
POST /api/search
{
  query: string;
  searchType: "semantic" | "keyword" | "hybrid";
  limit: number;
  filters?: { sourceTypes?: string[]; };
}

POST /api/analyze-document
{
  content: string;
  analysisType: "summary" | "classification" | "key_points";
  useMarkdown?: boolean;
}

POST /api/enhance-query
{
  query: string;
  context?: string;
}
```

### **Health Check**
```typescript
GET /api/health
// Returns comprehensive health status of all services including:
// - Nebius AI (embeddings, chat completions)
// - Modal.com (API connectivity, function availability)
// - External APIs (GitHub, Wikipedia, ArXiv)
```

## πŸš€ Performance & Reliability

### **Performance Metrics**
- **Document Upload**: <1s for files up to 50MB with progress tracking
- **OCR Processing**: 5-15 seconds per PDF/image via Modal distributed computing
- **Vector Search**: <500ms for similarity search across large document collections
- **Index Building**: 10-60 seconds for 100-1000 documents using FAISS
- **Nebius AI**:
  - Document analysis: 3-5 seconds for comprehensive analysis
  - Embedding generation: 500ms-1s per document
  - Query enhancement: 1-2 seconds
- **Traditional Search**: <100ms for local database queries

### **Production Scalability**
- **Distributed Computing**: Modal automatically scales compute resources (2-4GB per task)
- **Concurrent Processing**: Parallel document processing across multiple nodes
- **Persistent Storage**: SQLite for metadata, Modal volumes for vector indices
- **Batch Operations**: Process hundreds of documents simultaneously
- **Intelligent Caching**: Optimized repeated operations and query results
- **Graceful Fallbacks**: Continues operation when external services unavailable
- **Resource Optimization**: Automatic cleanup and memory management

### **Error Handling**
- React Error Boundaries prevent UI crashes
- Comprehensive API error responses
- Automatic retry logic for network requests
- User-friendly error messages

## πŸ”’ Security Features

### **Input Protection**
- Request body size limits (10MB)
- Comprehensive input sanitization
- SQL injection prevention
- XSS protection with CSP headers

### **API Security**
- Rate limiting on all endpoints
- Secure environment variable handling
- No hardcoded credentials
- Proper error logging without information disclosure

### **Infrastructure Security**
- Helmet.js security headers
- CORS configuration
- Secure cookie handling
- Production-ready error handling

## πŸ› οΈ Development

### **Code Quality**
- 100% TypeScript coverage
- ESLint + Prettier configuration
- Comprehensive error handling
- Type-safe API contracts with Zod validation

### **Testing**
```bash
# Type checking
npm run check

# Development server
npm run dev

# Production build
npm run build
```

## πŸŽ‰ Latest Features

- βœ… **Document Upload System**: Real file upload with drag-and-drop, supporting PDFs, images, text files
- βœ… **OCR Processing Pipeline**: Modal-powered text extraction from PDFs and images using Tesseract
- βœ… **Vector Search Engine**: FAISS-based semantic search with distributed index building
- βœ… **SQLite Database**: Persistent storage replacing in-memory data with full metadata tracking
- βœ… **Batch Processing**: Concurrent document processing across Modal's distributed compute nodes
- βœ… **Production Ready**: Real heavy workloads utilizing Modal's computational capabilities

## πŸ“š Production Architecture

### **Complete Document Processing Pipeline**

**πŸ“„ Document Upload β†’ πŸ”„ Processing β†’ πŸ” Search β†’ πŸ“Š Analysis**

1. **Upload & Storage**:
   - Multi-file drag-and-drop interface (PDFs, images, text files)
   - SQLite database with full metadata tracking
   - File validation and organization by date

2. **Modal Distributed Processing**:
   - OCR text extraction using Tesseract for images/PDFs
   - Parallel processing across compute nodes (2-4GB per task)
   - Batch operations for large document collections

3. **AI Analysis & Embeddings**:
   - Nebius AI generates 1536-dimensional embeddings
   - Document classification and content analysis
   - Quality assessment and metadata enrichment

4. **Vector Index & Search**:
   - FAISS index building via Modal's distributed computing
   - High-performance semantic similarity search
   - Persistent storage across sessions

### **Service Integration & Division of Responsibilities**

## **🧠 Nebius AI: Language Intelligence & AI Reasoning**

### **Used For:**
- **πŸ“ Document Analysis**: Classification, summarization, key points extraction, quality scoring
- **πŸ” Search Intelligence**: Query enhancement, intent understanding, relevance scoring  
- **πŸ’­ AI Reasoning**: Research synthesis, explanations, conversational responses
- **🎯 Embeddings**: Real-time text-to-vector conversion using BAAI/bge-en-icl model
- **πŸ“Š Content Understanding**: All language comprehension and semantic analysis

### **Specific Endpoints:**
- `/api/analyze-document` - Document analysis with DeepSeek-R1 model
- `/api/enhance-query` - AI-powered query improvement
- `/api/embeddings` - Generate vector embeddings
- `/api/research-synthesis` - Combine insights from multiple sources
- `/api/ai-search` - Enhanced semantic search

---

## **⚑ Modal.com: Heavy Computation & Distributed Processing**

### **Used For:**
- **πŸ“„ OCR Processing**: PDF and image text extraction using Tesseract
- **πŸ”§ Vector Operations**: FAISS index building and high-performance search
- **πŸ“¦ Batch Processing**: Concurrent processing of large document collections
- **πŸ’Ύ Infrastructure**: Serverless scaling, persistent storage, distributed compute
- **πŸš€ Heavy Workloads**: All computationally intensive operations

### **Specific Endpoints:**
- `/api/documents/process/:id` - OCR text extraction via Modal
- `/api/documents/index/build` - FAISS vector index creation  
- `/api/documents/search/vector` - High-performance vector search
- `/api/documents/process/batch` - Distributed batch processing

### **Live Deployment**: [Modal App](https://fazeelusmani18--knowledgebridge-main-fastapi-app.modal.run)

---

## **πŸ”„ How They Work Together**

### **Document Processing Pipeline:**
1. **Upload** β†’ Local file storage
2. **OCR** β†’ **Modal** extracts text from PDFs/images
3. **Analysis** β†’ **Nebius** analyzes content and generates embeddings
4. **Indexing** β†’ **Modal** builds FAISS vector index
5. **Search** β†’ **Modal** performs vector search, **Nebius** scores relevance

### **Search Workflow:**
1. **Query Enhancement** β†’ **Nebius** improves user queries
2. **Vector Search** β†’ **Modal** finds similar documents
3. **Traditional Search** β†’ Local database + external APIs
4. **Ranking** β†’ **Nebius** scores and ranks combined results
5. **Synthesis** β†’ **Nebius** generates insights

---

## **πŸ“Š Clear Division:**

| Feature | Nebius AI | Modal.com |
|---------|-----------|-----------|
| **OCR Processing** | ❌ | βœ… |
| **Document Analysis** | βœ… | ❌ |
| **Vector Search** | ❌ | βœ… |
| **Query Enhancement** | βœ… | ❌ |
| **Batch Processing** | ❌ | βœ… |
| **Embeddings** | βœ… | βœ…* |
| **Research Synthesis** | βœ… | ❌ |

*Modal only for batch embeddings, Nebius for real-time

**Nebius = "The Brain"** (AI intelligence)  
**Modal = "The Engine"** (computational power)

### **Intelligent Fallbacks**
- **Modal Unavailable**: Local processing for text files, basic search
- **Nebius Unavailable**: Mock embeddings, simplified analysis
- **Network Issues**: Cached results and offline functionality

## πŸ† Track 3: Agentic Demo Showcase Features

### **πŸ€– "Show us the most incredible things that your agents can do!"**

KnowledgeBridge demonstrates sophisticated multi-agent systems in action:

### **🧠 Autonomous Agent Workflows**
- **Smart Agent Coordination**: Multiple specialized agents work together to fulfill complex research tasks
- **Adaptive Agent Behavior**: Agents dynamically adjust strategies based on query complexity and source availability  
- **Multi-Modal Agent Processing**: Different agent types (search, analysis, validation) collaborate seamlessly
- **Intelligent Agent Fallbacks**: Backup agents activate automatically when primary agents encounter issues

### **πŸ” Real-Time Agent Decision Making**
- **Query Analysis Agents**: Instantly determine optimal search strategies across 4+ sources
- **Load Balancing Agents**: Distribute workload intelligently based on API response times and rate limits
- **Quality Control Agents**: Evaluate and filter results in real-time for relevance and authenticity
- **Synthesis Agents**: Combine disparate information sources into coherent, actionable insights

### **πŸ“Š Advanced Agent Orchestration**
- **Parallel Agent Execution**: Simultaneous deployment of search agents across GitHub, Wikipedia, ArXiv
- **Agent Communication Protocols**: Real-time coordination between agents for optimal resource utilization
- **Adaptive Agent Learning**: Agents improve performance based on user interactions and feedback
- **Error Recovery Agents**: Autonomous problem-solving when individual agents encounter failures

### **πŸ›‘οΈ Production-Grade Agent Infrastructure**
- **Security Agent Monitoring**: Continuous protection against abuse with intelligent rate limiting
- **Validation Agent Networks**: Multi-layer content verification and URL authenticity checking
- **Performance Agent Optimization**: Automatic scaling and resource management for enterprise workloads
- **Resilience Agent Systems**: Graceful degradation and fault tolerance across all agent operations

### **⚑ Agent Performance Metrics**
- **Sub-second Agent Response**: Query analysis and routing in <100ms
- **Concurrent Agent Processing**: 4+ agents working simultaneously on complex research tasks
- **Intelligent Agent Caching**: Smart result storage and retrieval for enhanced performance
- **Scalable Agent Architecture**: Horizontal scaling support for enterprise deployment

## πŸ“„ License

MIT License - see [LICENSE](LICENSE) file for details.

## πŸ”— Related Resources

### **AI Services**
- [Nebius AI Documentation](https://docs.nebius.ai/) - Advanced language models and embeddings
- [Modal Documentation](https://modal.com/docs) - Serverless computing platform
- **Live Modal App**: [https://fazeelusmani18--knowledgebridge-main-fastapi-app.modal.run](https://fazeelusmani18--knowledgebridge-main-fastapi-app.modal.run)
- **Modal API Docs**: [https://fazeelusmani18--knowledgebridge-main-fastapi-app.modal.run/docs](https://fazeelusmani18--knowledgebridge-main-fastapi-app.modal.run/docs)

### **Frontend Technologies**
- [React Query Documentation](https://tanstack.com/query/latest)
- [Radix UI Components](https://www.radix-ui.com/)
- [Tailwind CSS](https://tailwindcss.com/)

### **AI Models**
- [DeepSeek Models](https://platform.deepseek.com/) - Advanced reasoning capabilities
- [BAAI/bge-en-icl](https://huggingface.co/BAAI/bge-en-icl) - Embedding model for semantic search

---

## πŸš€ Agents-MCP-Hackathon Submission Summary

**KnowledgeBridge** showcases the incredible power of AI agents through:

πŸ€– **Multi-Agent Orchestration** - Coordinated intelligence across search, analysis, and synthesis agents  
πŸ” **Real-Time Decision Making** - Agents adapt strategies and optimize performance dynamically  
πŸ“Š **Advanced Agent Workflows** - Complex multi-step processes handled autonomously  
πŸ›‘οΈ **Production-Ready Agent Infrastructure** - Enterprise-grade security and resilience  

**Track 3: Agentic Demo Showcase** - Demonstrating what happens when sophisticated AI agents work together to revolutionize knowledge discovery and research workflows.

**Built for the Hugging Face Agents-MCP-Hackathon** πŸ†

Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference