|
import os |
|
import requests |
|
import json |
|
import logging |
|
|
|
logging.basicConfig( |
|
level=logging.INFO, |
|
format="%(asctime)s - %(name)s - %(levelname)s - %(message)s" |
|
) |
|
logger = logging.getLogger(__name__) |
|
|
|
API_KEYS = { |
|
"HUGGINGFACE": 'HF_TOKEN', |
|
"GROQ": 'GROQ_API_KEY', |
|
"OPENROUTER": 'OPENROUTER_API_KEY', |
|
"TOGETHERAI": 'TOGETHERAI_API_KEY', |
|
"COHERE": 'COHERE_API_KEY', |
|
"XAI": 'XAI_API_KEY', |
|
"OPENAI": 'OPENAI_API_KEY', |
|
"GOOGLE": 'GOOGLE_API_KEY', |
|
} |
|
|
|
API_URLS = { |
|
"HUGGINGFACE": 'https://api-inference.huggingface.co/models/', |
|
"GROQ": 'https://api.groq.com/openai/v1/chat/completions', |
|
"OPENROUTER": 'https://openrouter.ai/api/v1/chat/completions', |
|
"TOGETHERAI": 'https://api.together.ai/v1/chat/completions', |
|
"COHERE": 'https://api.cohere.ai/v1/chat', |
|
"XAI": 'https://api.x.ai/v1/chat/completions', |
|
"OPENAI": 'https://api.openai.com/v1/chat/completions', |
|
"GOOGLE": 'https://generativelanguage.googleapis.com/v1beta/models/', |
|
} |
|
|
|
MODELS_BY_PROVIDER = { |
|
"groq": { |
|
"default": "llama3-8b-8192", |
|
"models": { |
|
"Llama 3 8B (Groq)": "llama3-8b-8192", |
|
"Llama 3 70B (Groq)": "llama3-70b-8192", |
|
"Mixtral 8x7B (Groq)": "mixtral-8x7b-32768", |
|
"Gemma 7B (Groq)": "gemma-7b-it", |
|
} |
|
}, |
|
"openrouter": { |
|
"default": "nousresearch/llama-3-8b-instruct", |
|
"models": { |
|
"Nous Llama-3 8B Instruct (OpenRouter)": "nousresearch/llama-3-8b-instruct", |
|
"Mistral 7B Instruct v0.2 (OpenRouter)": "mistralai/mistral-7b-instruct:free", |
|
"Gemma 7B Instruct (OpenRouter)": "google/gemma-7b-it:free", |
|
"Mixtral 8x7B Instruct v0.1 (OpenRouter)": "mistralai/mixtral-8x7b-instruct", |
|
"Llama 2 70B Chat (OpenRouter)": "meta-llama/llama-2-70b-chat", |
|
"Neural Chat 7B v3.1 (OpenRouter)": "intel/neural-chat-7b-v3-1", |
|
"Goliath 120B (OpenRouter)": "twob/goliath-v2-120b", |
|
} |
|
}, |
|
"togetherai": { |
|
"default": "meta-llama/Llama-3-8b-chat-hf", |
|
"models": { |
|
"Llama 3 8B Chat (TogetherAI)": "meta-llama/Llama-3-8b-chat-hf", |
|
"Llama 3 70B Chat (TogetherAI)": "meta-llama/Llama-3-70b-chat-hf", |
|
"Mixtral 8x7B Instruct (TogetherAI)": "mistralai/Mixtral-8x7B-Instruct-v0.1", |
|
"Gemma 7B Instruct (TogetherAI)": "google/gemma-7b-it", |
|
"RedPajama INCITE Chat 3B (TogetherAI)": "togethercomputer/RedPajama-INCITE-Chat-3B-v1", |
|
} |
|
}, |
|
"google": { |
|
"default": "gemini-1.5-flash-latest", |
|
"models": { |
|
"Gemini 1.5 Flash (Latest)": "gemini-1.5-flash-latest", |
|
"Gemini 1.5 Pro (Latest)": "gemini-1.5-pro-latest", |
|
} |
|
}, |
|
"cohere": { |
|
"default": "command-light", |
|
"models": { |
|
"Command R (Cohere)": "command-r", |
|
"Command R+ (Cohere)": "command-r-plus", |
|
"Command Light (Cohere)": "command-light", |
|
"Command (Cohere)": "command", |
|
} |
|
}, |
|
"huggingface": { |
|
"default": "HuggingFaceH4/zephyr-7b-beta", |
|
"models": { |
|
"Zephyr 7B Beta (H4/HF Inf.)": "HuggingFaceH4/zephyr-7b-beta", |
|
"Mistral 7B Instruct v0.2 (HF Inf.)": "mistralai/Mistral-7B-Instruct-v0.2", |
|
"Llama 2 13B Chat (Meta/HF Inf.)": "meta-llama/Llama-2-13b-chat-hf", |
|
"OpenAssistant/oasst-sft-4-pythia-12b (HF Inf.)": "OpenAssistant/oasst-sft-4-pythia-12b", |
|
} |
|
}, |
|
"openai": { |
|
"default": "gpt-3.5-turbo", |
|
"models": { |
|
"GPT-4o (OpenAI)": "gpt-4o", |
|
"GPT-4o mini (OpenAI)": "gpt-4o-mini", |
|
"GPT-4 Turbo (OpenAI)": "gpt-4-turbo", |
|
"GPT-3.5 Turbo (OpenAI)": "gpt-3.5-turbo", |
|
} |
|
}, |
|
"xai": { |
|
"default": "grok-1", |
|
"models": { |
|
"Grok-1 (xAI)": "grok-1", |
|
} |
|
} |
|
} |
|
|
|
def _get_api_key(provider: str, ui_api_key_override: str = None) -> str: |
|
if ui_api_key_override: |
|
return ui_api_key_override.strip() |
|
|
|
env_var_name = API_KEYS.get(provider.upper()) |
|
if env_var_name: |
|
env_key = os.getenv(env_var_name) |
|
if env_key: |
|
return env_key.strip() |
|
|
|
if provider.lower() == 'huggingface': |
|
hf_token = os.getenv("HF_TOKEN") |
|
if hf_token: return hf_token.strip() |
|
|
|
logger.warning(f"API Key not found for provider '{provider}'. Checked UI override and environment variable '{env_var_name or 'N/A'}'.") |
|
return None |
|
|
|
def get_available_providers() -> list[str]: |
|
return sorted(list(MODELS_BY_PROVIDER.keys())) |
|
|
|
def get_models_for_provider(provider: str) -> list[str]: |
|
return sorted(list(MODELS_BY_PROVIDER.get(provider.lower(), {}).get("models", {}).keys())) |
|
|
|
def get_default_model_for_provider(provider: str) -> str | None: |
|
models_dict = MODELS_BY_PROVIDER.get(provider.lower(), {}).get("models", {}) |
|
default_model_id = MODELS_BY_PROVIDER.get(provider.lower(), {}).get("default") |
|
if default_model_id: |
|
for display_name, model_id in models_dict.items(): |
|
if model_id == default_model_id: |
|
return display_name |
|
if models_dict: |
|
return sorted(list(models_dict.keys()))[0] |
|
return None |
|
|
|
def get_model_id_from_display_name(provider: str, display_name: str) -> str | None: |
|
models = MODELS_BY_PROVIDER.get(provider.lower(), {}).get("models", {}) |
|
return models.get(display_name) |
|
|
|
def generate_stream(provider: str, model_display_name: str, api_key_override: str, messages: list[dict]) -> iter: |
|
provider_lower = provider.lower() |
|
api_key = _get_api_key(provider_lower, api_key_override) |
|
|
|
base_url = API_URLS.get(provider.upper()) |
|
model_id = get_model_id_from_display_name(provider_lower, model_display_name) |
|
|
|
if not api_key: |
|
env_var_name = API_KEYS.get(provider.upper(), 'N/A') |
|
yield f"Error: API Key not found for {provider}. Please set it in the UI override or environment variable '{env_var_name}'." |
|
return |
|
if not base_url: |
|
yield f"Error: Unknown provider '{provider}' or missing API URL configuration." |
|
return |
|
if not model_id: |
|
yield f"Error: Unknown model '{model_display_name}' for provider '{provider}'. Please select a valid model." |
|
return |
|
|
|
headers = {} |
|
payload = {} |
|
request_url = base_url |
|
|
|
logger.info(f"Calling {provider}/{model_display_name} (ID: {model_id}) stream...") |
|
|
|
try: |
|
if provider_lower in ["groq", "openrouter", "togetherai", "openai", "xai"]: |
|
headers = {"Authorization": f"Bearer {api_key}", "Content-Type": "application/json"} |
|
payload = { |
|
"model": model_id, |
|
"messages": messages, |
|
"stream": True |
|
} |
|
if provider_lower == "openrouter": |
|
headers["HTTP-Referer"] = os.getenv("SPACE_HOST") or "https://github.com/your_username/ai-space-builder" |
|
headers["X-Title"] = "AI Space Builder" |
|
|
|
response = requests.post(request_url, headers=headers, json=payload, stream=True, timeout=180) |
|
response.raise_for_status() |
|
|
|
byte_buffer = b"" |
|
for chunk in response.iter_content(chunk_size=8192): |
|
byte_buffer += chunk |
|
while b'\n' in byte_buffer: |
|
line, byte_buffer = byte_buffer.split(b'\n', 1) |
|
decoded_line = line.decode('utf-8', errors='ignore') |
|
if decoded_line.startswith('data: '): |
|
data = decoded_line[6:] |
|
if data == '[DONE]': |
|
byte_buffer = b'' |
|
break |
|
try: |
|
event_data = json.loads(data) |
|
if event_data.get("choices") and len(event_data["choices"]) > 0: |
|
delta = event_data["choices"][0].get("delta") |
|
if delta and delta.get("content"): |
|
yield delta["content"] |
|
except json.JSONDecodeError: |
|
logger.warning(f"Failed to decode JSON from stream line: {decoded_line}") |
|
except Exception as e: |
|
logger.error(f"Error processing stream data: {e}, Data: {decoded_line}") |
|
if byte_buffer: |
|
remaining_line = byte_buffer.decode('utf-8', errors='ignore') |
|
if remaining_line.startswith('data: '): |
|
data = remaining_line[6:] |
|
if data != '[DONE]': |
|
try: |
|
event_data = json.loads(data) |
|
if event_data.get("choices") and len(event_data["choices"]) > 0: |
|
delta = event_data["choices"][0].get("delta") |
|
if delta and delta.get("content"): |
|
yield delta["content"] |
|
except json.JSONDecodeError: |
|
logger.warning(f"Failed to decode final stream buffer JSON: {remaining_line}") |
|
except Exception as e: |
|
logger.error(f"Error processing final stream buffer data: {e}, Data: {remaining_line}") |
|
|
|
|
|
elif provider_lower == "google": |
|
system_instruction = None |
|
filtered_messages = [] |
|
for msg in messages: |
|
if msg["role"] == "system": |
|
system_instruction = msg["content"] |
|
else: |
|
role = "model" if msg["role"] == "assistant" else msg["role"] |
|
filtered_messages.append({"role": role, "parts": [{"text": msg["content"]}]}) |
|
|
|
payload = { |
|
"contents": filtered_messages, |
|
"safetySettings": [ |
|
{"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT", "threshold": "BLOCK_NONE"}, |
|
{"category": "HARM_CATEGORY_HATE_SPEECH", "threshold": "BLOCK_NONE"}, |
|
{"category": "HARM_CATEGORY_HARASSMENT", "threshold": "BLOCK_NONE"}, |
|
{"category": "HARM_CATEGORY_DANGEROUS_CONTENT", "threshold": "BLOCK_NONE"}, |
|
], |
|
"generationConfig": { |
|
"temperature": 0.7, |
|
} |
|
} |
|
if system_instruction: |
|
payload["system_instruction"] = {"parts": [{"text": system_instruction}]} |
|
|
|
request_url = f"{base_url}{model_id}:streamGenerateContent" |
|
headers = {"Content-Type": "application/json"} |
|
request_url = f"{request_url}?key={api_key}" |
|
|
|
response = requests.post(request_url, headers=headers, json=payload, stream=True, timeout=180) |
|
response.raise_for_status() |
|
|
|
byte_buffer = b"" |
|
for chunk in response.iter_content(chunk_size=8192): |
|
byte_buffer += chunk |
|
while b'\n' in byte_buffer: |
|
line, byte_buffer = byte_buffer.split(b'\n', 1) |
|
decoded_line = line.decode('utf-8', errors='ignore') |
|
|
|
if decoded_line.startswith('data: '): |
|
decoded_line = decoded_line[6:].strip() |
|
|
|
if not decoded_line: continue |
|
|
|
try: |
|
event_data_list = json.loads(f"[{decoded_line}]") |
|
if not isinstance(event_data_list, list): event_data_list = [event_data_list] |
|
|
|
for event_data in event_data_list: |
|
if not isinstance(event_data, dict): continue |
|
|
|
if event_data.get("candidates") and len(event_data["candidates"]) > 0: |
|
candidate = event_data["candidates"][0] |
|
if candidate.get("content") and candidate["content"].get("parts"): |
|
full_text_chunk = "".join(part.get("text", "") for part in candidate["content"]["parts"]) |
|
if full_text_chunk: |
|
yield full_text_chunk |
|
|
|
except json.JSONDecodeError: |
|
logger.warning(f"Failed to decode JSON from Google stream chunk: {decoded_line}. Accumulating buffer.") |
|
pass |
|
|
|
except Exception as e: |
|
logger.error(f"Error processing Google stream data: {e}, Data: {decoded_line}") |
|
|
|
if byte_buffer: |
|
remaining_line = byte_buffer.decode('utf-8', errors='ignore').strip() |
|
if remaining_line: |
|
try: |
|
event_data_list = json.loads(f"[{remaining_line}]") |
|
if not isinstance(event_data_list, list): event_data_list = [event_data_list] |
|
for event_data in event_data_list: |
|
if not isinstance(event_data, dict): continue |
|
if event_data.get("candidates") and len(event_data["candidates"]) > 0: |
|
candidate = event_data["candidates"][0] |
|
if candidate.get("content") and candidate["content"].get("parts"): |
|
full_text_chunk = "".join(part.get("text", "") for part in candidate["content"]["parts"]) |
|
if full_text_chunk: |
|
yield full_text_chunk |
|
except json.JSONDecodeError: |
|
logger.warning(f"Failed to decode final Google stream buffer JSON: {remaining_line}") |
|
except Exception as e: |
|
logger.error(f"Error processing final Google stream buffer data: {e}, Data: {remaining_line}") |
|
|
|
|
|
elif provider_lower == "cohere": |
|
headers = {"Authorization": f"Bearer {api_key}", "Content-Type": "application/json"} |
|
request_url = f"{base_url}" |
|
|
|
chat_history_for_cohere = [] |
|
system_prompt_for_cohere = None |
|
current_message_for_cohere = "" |
|
|
|
temp_history = [] |
|
for msg in messages: |
|
if msg["role"] == "system": |
|
system_prompt_for_cohere = msg["content"] |
|
elif msg["role"] == "user" or msg["role"] == "assistant": |
|
temp_history.append(msg) |
|
|
|
if temp_history: |
|
current_message_for_cohere = temp_history[-1]["content"] |
|
chat_history_for_cohere = [{"role": ("chatbot" if m["role"] == "assistant" else m["role"]), "message": m["content"]} for m in temp_history[:-1]] |
|
|
|
if not current_message_for_cohere: |
|
yield "Error: User message not found for Cohere API call." |
|
return |
|
|
|
payload = { |
|
"model": model_id, |
|
"message": current_message_for_cohere, |
|
"stream": True, |
|
"temperature": 0.7 |
|
} |
|
if chat_history_for_cohere: |
|
payload["chat_history"] = chat_history_for_cohere |
|
if system_prompt_for_cohere: |
|
payload["preamble"] = system_prompt_for_cohere |
|
|
|
response = requests.post(request_url, headers=headers, json=payload, stream=True, timeout=180) |
|
response.raise_for_status() |
|
|
|
byte_buffer = b"" |
|
for chunk in response.iter_content(chunk_size=8192): |
|
byte_buffer += chunk |
|
while b'\n\n' in byte_buffer: |
|
event_chunk, byte_buffer = byte_buffer.split(b'\n\n', 1) |
|
lines = event_chunk.strip().split(b'\n') |
|
event_type = None |
|
event_data = None |
|
|
|
for l in lines: |
|
if l.startswith(b"event: "): event_type = l[7:].strip().decode('utf-8', errors='ignore') |
|
elif l.startswith(b"data: "): |
|
try: event_data = json.loads(l[6:].strip().decode('utf-8', errors='ignore')) |
|
except json.JSONDecodeError: logger.warning(f"Cohere: Failed to decode event data JSON: {l[6:].strip()}") |
|
|
|
if event_type == "text-generation" and event_data and "text" in event_data: |
|
yield event_data["text"] |
|
elif event_type == "stream-end": |
|
byte_buffer = b'' |
|
break |
|
|
|
if byte_buffer: |
|
event_chunk = byte_buffer.strip() |
|
if event_chunk: |
|
lines = event_chunk.split(b'\n') |
|
event_type = None |
|
event_data = None |
|
for l in lines: |
|
if l.startswith(b"event: "): event_type = l[7:].strip().decode('utf-8', errors='ignore') |
|
elif l.startswith(b"data: "): |
|
try: event_data = json.loads(l[6:].strip().decode('utf-8', errors='ignore')) |
|
except json.JSONDecodeError: logger.warning(f"Cohere: Failed to decode final event data JSON: {l[6:].strip()}") |
|
|
|
if event_type == "text-generation" and event_data and "text" in event_data: |
|
yield event_data["text"] |
|
elif event_type == "stream-end": |
|
pass |
|
|
|
|
|
elif provider_lower == "huggingface": |
|
yield f"Error: Direct Hugging Face Inference API streaming for chat models is experimental and model-dependent. Consider using OpenRouter or TogetherAI for HF models with standardized streaming." |
|
return |
|
|
|
else: |
|
yield f"Error: Unsupported provider '{provider}' for streaming chat." |
|
return |
|
|
|
except requests.exceptions.HTTPError as e: |
|
status_code = e.response.status_code if e.response is not None else 'N/A' |
|
error_text = e.response.text if e.response is not None else 'No response text' |
|
logger.error(f"HTTP error during streaming for {provider}/{model_id}: {e}") |
|
yield f"API HTTP Error ({status_code}): {error_text}\nDetails: {e}" |
|
except requests.exceptions.RequestException as e: |
|
logger.error(f"Request error during streaming for {provider}/{model_id}: {e}") |
|
yield f"API Request Error: Could not connect or receive response from {provider} ({e})" |
|
except Exception as e: |
|
logger.exception(f"Unexpected error during streaming for {provider}/{model_id}:") |
|
yield f"An unexpected error occurred: {e}" |