File size: 88,513 Bytes
1136fac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
#!/usr/bin/env python3
# Updated for Hugging Face Space compatibility
"""
Enhanced Track 3: Gmail AI Agent with Advanced Behaviors
Sophisticated agent decision-making and workflow automation
"""

# ⚠️ IMPORTANT NOTICE ⚠️
# On first run, the app may take 120-200 seconds to respond to queries
# This is because the Qwen LLM is hosted on Modal and requires time for cold start
# Subsequent requests will be much faster after the initial cold start
# Please be patient during the initial interaction with the AI assistant

import gradio as gr
import json
import logging
import os
from typing import List, Dict, Any, Optional, Tuple
from dataclasses import dataclass
import pandas as pd
from datetime import datetime, timedelta
import re
import requests  # Added for Modal API requests
import time  # Added for retry logic
from collections import Counter

# Import Google API libraries for authentication
from google.oauth2.credentials import Credentials
from google.auth.transport.requests import Request
from google_auth_oauthlib.flow import InstalledAppFlow

# Import existing modules
from dotenv import load_dotenv
load_dotenv()
from mcp_client import GmailMCPClientSync

# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger("enhanced-gmail-agent")

# Get environment variables from Hugging Face Secrets
GMAIL_CLIENT_ID = os.getenv("GMAIL_CLIENT_ID")
GMAIL_CLIENT_SECRET = os.getenv("GMAIL_CLIENT_SECRET")
GMAIL_TOKEN_JSON = os.getenv("GMAIL_TOKEN_JSON")
MODAL_API_URL = os.getenv("MODAL_API_URL")

# Log environment variable status (without revealing values)
logger.info(f"GMAIL_CLIENT_ID available: {GMAIL_CLIENT_ID is not None}")
logger.info(f"GMAIL_CLIENT_SECRET available: {GMAIL_CLIENT_SECRET is not None}")
logger.info(f"GMAIL_TOKEN_JSON available: {GMAIL_TOKEN_JSON is not None}")
logger.info(f"MODAL_API_URL available: {MODAL_API_URL is not None}")

# Create credentials.json from environment variables if not present
if GMAIL_CLIENT_ID and GMAIL_CLIENT_SECRET:
    credentials_data = {
        "installed": {
            "client_id": GMAIL_CLIENT_ID,
            "client_secret": GMAIL_CLIENT_SECRET,
            "auth_uri": "https://accounts.google.com/o/oauth2/auth",
            "token_uri": "https://oauth2.googleapis.com/token",
            "auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
            "redirect_uris": ["urn:ietf:wg:oauth:2.0:oob", "http://localhost"]
        }
    }
    
    # Write credentials.json file for Gmail MCP server
    with open("credentials.json", "w") as f:
        json.dump(credentials_data, f)
    logger.info("Created credentials.json from environment variables")
    
# Create token.json from environment variable if not present
if GMAIL_TOKEN_JSON:
    with open("token.json", "w") as f:
        f.write(GMAIL_TOKEN_JSON)
    logger.info("Created token.json from environment variable")

class QwenClient:
    """Client for the Modal-hosted Qwen model - Updated to properly handle thinking model"""
    
    def __init__(self, api_url: str = None):
        self.api_url = api_url
        self.first_request = True
        logger.info(f"Initializing QwenClient with API URL: {self.api_url}")
    
    def _strip_thinking_tags(self, text: str) -> str:
        """Strip <think> sections from the response to get clean output"""
        import re
        # Find and remove content between <think> and </think> or end of string
        return re.sub(r'<think>.*?(?:</think>|$)', '', text, flags=re.DOTALL).strip()
    
    def generate_content(self, prompt: str, max_tokens: int = 2048, 
                         temperature: float = 0.7, strip_thinking: bool = True, 
                         retries: int = 3, retry_delay: float = 2.0,
                         timeout: float = 180.0) -> Any:
        """Generate content using the Modal-hosted Qwen model with proper thinking model support"""
        
        # Check if prompt is too long - truncate if needed
        if len(prompt) > 4000:
            logger.warning(f"Prompt too long ({len(prompt)} chars), truncating to 4000 chars")
            prompt = prompt[:4000] + "... [truncated]"
        
        # Show extra message for first request
        if self.first_request:
            logger.info("⚠️ First request might take longer due to cold start...")
            self.first_request = False
            
        for attempt in range(retries):
            try:
                payload = {
                    "message": prompt,
                    "max_tokens": max_tokens,
                    "temperature": temperature,
                    "top_p": 0.9,
                    "strip_thinking": strip_thinking
                }
                
                logger.info(f"Sending request to Qwen API (attempt {attempt+1}/{retries}) with prompt length: {len(prompt)}")
                start_time = time.time()
                
                response = requests.post(
                    self.api_url, 
                    json=payload, 
                    headers={"Content-Type": "application/json"},
                    timeout=timeout
                )
                
                duration = time.time() - start_time
                logger.info(f"⏱️ Response received in {duration:.1f} seconds")
                
                # Check for successful response
                response.raise_for_status()
                
                result = response.json()
                response_text = result.get("response", "")
                
                logger.info(f"Received response from Qwen API: {len(response_text)} chars")
                
                # Only return if we actually got content
                if response_text and len(response_text.strip()) > 0:
                    # Create a response object that mimics Gemini's response format
                    class QwenResponse:
                        def __init__(self, text):
                            self.text = text
                    
                    # If strip_thinking was False, we already got clean response from API
                    # If strip_thinking was True, we also got clean response from API
                    # But let's double-check and clean locally if needed
                    if not strip_thinking and '<think>' in response_text:
                        # User wants to see thinking, so keep everything
                        final_text = response_text
                    else:
                        # Clean any remaining thinking tags
                        final_text = self._strip_thinking_tags(response_text)
                        # If after cleaning we have very little content, try to extract from original
                        if len(final_text.strip()) < 10 and '<think>' in response_text:
                            # Extract content after </think> tag
                            parts = response_text.split('</think>')
                            if len(parts) > 1:
                                final_text = parts[-1].strip()
                            else:
                                # No closing tag, take content after last >
                                final_text = response_text.split('>')[-1].strip()
                    
                    # Log token usage if available
                    if 'tokens_used' in result:
                        logger.info(f"πŸ“Š Token usage: {result.get('input_tokens', 'N/A')} input, {result['tokens_used']} output")
                    
                    return QwenResponse(final_text)
                else:
                    logger.warning(f"Empty response received from Qwen API (attempt {attempt+1}/{retries})")
                    if attempt < retries - 1:
                        logger.info(f"Retrying in {retry_delay} seconds...")
                        time.sleep(retry_delay)
            
            except requests.exceptions.Timeout:
                logger.error(f"Timeout calling Qwen API (attempt {attempt+1}/{retries}) - request took too long")
                if attempt < retries - 1:
                    next_delay = retry_delay * (attempt + 1)
                    logger.info(f"Retrying in {next_delay} seconds...")
                    time.sleep(next_delay)
                else:
                    # Return a helpful fallback response on last attempt
                    class QwenResponse:
                        def __init__(self, text):
                            self.text = text
                    return QwenResponse("I apologize, but I'm having difficulty accessing enhanced AI capabilities right now due to timeout. Please try again later when the service may be more responsive.")
            
            except requests.RequestException as e:
                logger.error(f"Error calling Qwen API (attempt {attempt+1}/{retries}): {str(e)}")
                if hasattr(e, 'response') and e.response is not None:
                    logger.error(f"Response: {e.response.text}")
                if attempt < retries - 1:
                    next_delay = retry_delay * (attempt + 1)
                    logger.info(f"Retrying in {next_delay} seconds...")
                    time.sleep(next_delay)
        
        logger.error("All retry attempts failed for Qwen API request")
        
        # Create a fallback response when all attempts fail
        class QwenResponse:
            def __init__(self, text):
                self.text = text
        return QwenResponse("I apologize, but I can't access my advanced AI capabilities right now. Let me provide a simplified response based on your request. You might want to try again later when the network connection to the AI service is more stable.")

@dataclass
class AgentMemory:
    """Memory system for the agent to track context and user patterns"""
    user_preferences: Dict[str, Any]
    conversation_context: List[Dict[str, Any]]
    email_patterns: Dict[str, Any]
    workflow_history: List[Dict[str, Any]]

class EnhancedGmailAgent:
    """Enhanced Gmail AI Agent with sophisticated behaviors"""
    
    def __init__(self, mcp_server_path: str = "gmail_mcp_server.py", modal_api_url: str = None):
        self.mcp_client = GmailMCPClientSync(mcp_server_path)
        self.memory = AgentMemory(
            user_preferences={},
            conversation_context=[],
            email_patterns={},
            workflow_history=[]
        )
        
        # Initialize Qwen model - Use environment variable if no URL provided
        self.modal_api_url = modal_api_url or MODAL_API_URL
        
        try:
            logger.info("Initializing Qwen model client from Modal")
            if not self.modal_api_url:
                logger.warning("No Modal API URL provided, Qwen functionality will be limited")
                self.model = None
                self.model_status = "Not configured"
            else:
                self.model = QwenClient(api_url=self.modal_api_url)
                logger.info("Qwen model client initialized successfully")
                self.model_status = "Initialized"
        except Exception as e:
            logger.error(f"Error initializing Qwen model: {str(e)}")
            self.model = None
            self.model_status = "Error during initialization"
        
        # Initialize agent state
        self.last_analysis = {}
        self.active_workflows = []
        
    def intelligent_email_triage(self, max_emails: int = 20) -> Dict[str, Any]:
        """
        Sophisticated email triage with AI-powered categorization and priority scoring - SINGLE API CALL VERSION
        """
        logger.info("🧠 Starting intelligent email triage...")
        
        try:
            # Fetch recent emails
            emails = self.mcp_client.fetch_emails(query="newer_than:3d", max_results=max_emails)
            
            if not emails or 'emails' not in emails:
                return {"error": "No emails to analyze"}
            
            email_list = emails['emails']
            logger.info(f"Fetched {len(email_list)} emails for analysis")
            
            # Categorize and prioritize emails using AI - SINGLE API CALL
            triage_results = {
                "high_priority": [],
                "meetings_and_calls": [],
                "action_required": [],
                "newsletters_and_updates": [],
                "personal": [],
                "low_priority": [],
                "analysis_summary": "",
                "recommendations": []
            }

            if self.model and len(email_list) > 0:
                logger.info(f"Processing ALL {len(email_list)} emails in SINGLE API call")
                
                # Create a comprehensive prompt for ALL emails at once
                email_summaries = []
                for i, email in enumerate(email_list):
                    # Create compact representations of emails
                    subject = email.get('subject', 'No subject')[:80]  # Limit subject length
                    sender = self._clean_sender(email.get('sender', 'Unknown'))[:50]  # Limit sender length
                    snippet = email.get('snippet', 'No preview')[:60]  # Limit snippet length
                    is_unread = email.get('is_unread', False)
                    
                    email_summaries.append(f"Email {i+1}: Subject=\"{subject}\" | From={sender} | Preview=\"{snippet}\" | Unread={is_unread}")
                
                # Create the master prompt for all emails - IMPROVED FOR BETTER ANALYSIS
                master_prompt = f"""You are an expert email analyst and productivity coach. Analyze ALL {len(email_list)} emails below and provide detailed, actionable insights.

EMAILS TO ANALYZE:
{chr(10).join(email_summaries)}

TASK: For each email, determine:
1. Category (select exactly one): 
   - high_priority: Urgent emails needing immediate attention (deadlines, emergencies)
   - meetings_and_calls: Calendar items, meeting invites, calls
   - action_required: Emails requiring specific action but not urgent
   - newsletters_and_updates: Marketing, newsletters, product updates
   - personal: Personal communications
   - low_priority: Everything else with minimal importance

2. Priority score: 0.0 to 1.0 (0.0 = lowest, 1.0 = highest priority)
   - 0.9-1.0: Critical/urgent - requires immediate attention
   - 0.7-0.8: Important - handle today
   - 0.5-0.6: Moderate - handle within 48 hours
   - 0.3-0.4: Low - handle when convenient
   - 0.1-0.2: Very low - can be archived or ignored

3. Detailed reasoning: Explain WHY you categorized this way (deadline mentions, sender importance, action words, etc.)

RESPONSE FORMAT - Respond with ONLY this JSON array (no extra text):
[
  {{
    "email_num": 1, 
    "category": "category_name", 
    "priority_score": 0.8, 
    "reasoning": "Detailed reason with specific insights from email content"
  }},
  {{
    "email_num": 2, 
    "category": "category_name", 
    "priority_score": 0.6, 
    "reasoning": "Detailed reason with specific insights from email content"
  }},
  ...continue for all {len(email_list)} emails...
]

IMPORTANT ANALYSIS GUIDELINES:
- Look for urgency indicators: words like "urgent", "ASAP", "deadline", "today", "overdue"
- Consider sender importance: work contacts vs marketing emails
- Identify action verbs: "confirm", "review", "approve", "respond", "complete"
- Check for meeting details: times, dates, calendar invites
- Detect personal communication markers: friendly tone, personal questions
- Evaluate if the email requires a response or action
- Consider unread status as potentially more important

Respond with ONLY the JSON array - no introduction, explanation or additional text.
"""

                try:
                    # Single API call for all emails
                    logger.info(f"Sending SINGLE request to Qwen API for ALL {len(email_list)} emails")
                    response = self.model.generate_content(
                        master_prompt, 
                        max_tokens=2048,  # Increased for longer response
                        temperature=0.2,  # Lower temperature for more consistent JSON
                        strip_thinking=True,  # We want clean JSON output
                        timeout=240.0  # Longer timeout for processing many emails
                    )
                    
                    if response and hasattr(response, 'text') and response.text:
                        response_text = response.text.strip()
                        logger.info(f"Received comprehensive response: {len(response_text)} chars")
                        
                        # Extract JSON from response
                        json_start = response_text.find('[')
                        json_end = response_text.rfind(']') + 1
                        
                        if json_start >= 0 and json_end > json_start:
                            try:
                                json_text = response_text[json_start:json_end]
                                results = json.loads(json_text)
                                
                                logger.info(f"Successfully parsed JSON with {len(results)} email analyses")
                                
                                # Process results and assign to categories
                                valid_categories = ['high_priority', 'meetings_and_calls', 'action_required', 
                                                  'newsletters_and_updates', 'personal', 'low_priority']
                                
                                for result in results:
                                    try:
                                        email_num = int(result.get('email_num', 1)) - 1  # Convert to 0-based index
                                        if 0 <= email_num < len(email_list):
                                            email = email_list[email_num]
                                            
                                            # Validate and clean category
                                            category = result.get('category', '').lower()
                                            if category not in valid_categories:
                                                category = 'newsletters_and_updates'  # Default fallback
                                            
                                            # Validate priority score
                                            try:
                                                priority_score = float(result.get('priority_score', 0.5))
                                                if not (0.0 <= priority_score <= 1.0):
                                                    priority_score = 0.5
                                            except:
                                                priority_score = 0.5
                                            
                                            reasoning = result.get('reasoning', 'AI analysis completed')
                                            
                                            # Create enhanced email data
                                            email_analysis = {
                                                **email,
                                                "priority_score": priority_score,
                                                "category": category,
                                                "ai_reasoning": reasoning,
                                                "suggested_actions": self._suggest_email_actions(email, category, priority_score)
                                            }
                                            
                                            triage_results[category].append(email_analysis)
                                            logger.info(f"βœ… Email {email_num+1}: '{email.get('subject', '')[:40]}...' β†’ {category} (score: {priority_score})")
                                        
                                    except Exception as e:
                                        logger.warning(f"Error processing email result {result}: {str(e)}")
                                        # Use fallback for this email
                                        if 0 <= email_num < len(email_list):
                                            self._apply_fallback_categorization(email_list[email_num], triage_results)
                                
                                # Check if we processed all emails, add fallback for any missing
                                processed_count = sum(len(emails) for category, emails in triage_results.items() 
                                                    if category not in ['analysis_summary', 'recommendations'])
                                
                                if processed_count < len(email_list):
                                    logger.warning(f"Only processed {processed_count}/{len(email_list)} emails, using fallback for remaining")
                                    # Add fallback for unprocessed emails
                                    for i, email in enumerate(email_list):
                                        # Check if this email was already processed
                                        email_found = False
                                        for category in ['high_priority', 'meetings_and_calls', 'action_required', 
                                                       'newsletters_and_updates', 'personal', 'low_priority']:
                                            if any(e.get('id') == email.get('id') for e in triage_results[category]):
                                                email_found = True
                                                break
                                        
                                        if not email_found:
                                            logger.info(f"Adding fallback categorization for email {i+1}")
                                            self._apply_fallback_categorization(email, triage_results)
                                
                                logger.info(f"πŸŽ‰ Successfully analyzed {len(email_list)} emails with AI in single API call!")
                                
                            except json.JSONDecodeError as e:
                                logger.warning(f"Failed to parse JSON from AI response: {e}")
                                logger.warning(f"Response was: {response_text[:500]}...")
                                # Use fallback for all emails
                                for email in email_list:
                                    self._apply_fallback_categorization(email, triage_results)
                        else:
                            logger.warning("Could not find valid JSON array in AI response")
                            logger.warning(f"Response was: {response_text[:500]}...")
                            # Use fallback for all emails
                            for email in email_list:
                                self._apply_fallback_categorization(email, triage_results)
                    else:
                        logger.warning("Empty or invalid response from AI")
                        # Use fallback for all emails
                        for email in email_list:
                            self._apply_fallback_categorization(email, triage_results)
                
                except Exception as e:
                    logger.error(f"Error in AI analysis: {str(e)}")
                    # Use fallback for all emails
                    for email in email_list:
                        self._apply_fallback_categorization(email, triage_results)
            else:
                # No AI model available, use fallback for all emails
                logger.info("No AI model available, using fallback categorization for all emails")
                for email in email_list:
                    self._apply_fallback_categorization(email, triage_results)
            
            # Generate intelligent summary and recommendations
            triage_results["analysis_summary"] = self._generate_triage_summary(triage_results)
            triage_results["recommendations"] = self._generate_workflow_recommendations(triage_results)
            
            # Update agent memory
            self._update_email_patterns(email_list)
            
            # Format results for beautiful display
            logger.info("🎨 Formatting triage results for display")
            formatted_output = self._display_triage_results(triage_results)
            
            # Return both raw results and formatted display
            triage_results["formatted_display"] = formatted_output
            
            return triage_results
            
        except Exception as e:
            logger.error(f"Error in intelligent triage: {e}")
            return {"error": str(e)}
    
    def _apply_fallback_categorization(self, email: Dict, triage_results: Dict):
        """Apply fallback categorization and add to triage results"""
        category, priority_score, reasoning = self._fallback_categorization(email)
        
        email_analysis = {
            **email,
            "priority_score": priority_score,
            "category": category,
            "ai_reasoning": reasoning,
            "suggested_actions": self._suggest_email_actions(email, category, priority_score)
        }
        
        triage_results[category].append(email_analysis)
    
    def _analyze_email_batch_with_ai(self, emails: List[Dict]) -> List[Tuple[str, float, str]]:
        """Use AI to analyze a batch of emails at once"""
        if not self.model or not emails:
            return [self._fallback_categorization(email) for email in emails]
        
        try:
            # Create a more efficient batch prompt for analyzing multiple emails at once
            # Simplify and shorten the prompt to prevent timeouts
            email_prompts = []
            for i, email in enumerate(emails):
                # Limit snippet length to avoid timeouts
                snippet = email.get('snippet', 'No preview')
                snippet = snippet[:50] if snippet else 'No preview'
                
                # Simpler prompt format
                email_prompts.append(f"""Email #{i+1}: Subject: "{email.get('subject', 'No subject')}" | From: {email.get('sender', 'Unknown')} | Preview: "{snippet}" | Unread: {email.get('is_unread', False)}""")
            
            batch_prompt = f"""
You are an email categorization expert. Analyze each email below and categorize them.
Respond ONLY with a JSON array containing one object per email.

Emails to analyze:
{chr(10).join(email_prompts)}

Categories: high_priority, meetings_and_calls, action_required, newsletters_and_updates, personal, low_priority

Response format (JSON array only):
[
  {{"category": "category_name", "priority_score": 0.1_to_1.0, "reasoning": "brief reason"}}
]
"""
            
            # Attempt to get response with increased timeout for batch processing
            response = self.model.generate_content(
                batch_prompt, 
                max_tokens=512,  # Reduced token count to speed up generation
                temperature=0.2,  # Lower temperature for more deterministic results
                timeout=120.0
            )
            
            # Validate response exists and has content
            if not response or not hasattr(response, 'text') or not response.text:
                logger.warning("Empty response from Qwen model for batch analysis")
                return [self._fallback_categorization(email) for email in emails]
            
            response_text = response.text.strip()
            logger.debug(f"Qwen batch response: {response_text}")
            
            # Try to extract JSON from response (in case there's extra text)
            json_start = response_text.find('[')
            json_end = response_text.rfind(']') + 1
            
            if json_start == -1 or json_end == 0:
                logger.warning("No valid JSON array found in batch response")
                return [self._fallback_categorization(email) for email in emails]
            
            json_text = response_text[json_start:json_end]
            
            try:
                # Parse JSON with validation
                results = json.loads(json_text)
                
                if not isinstance(results, list) or len(results) == 0:
                    logger.warning("JSON response is not a valid array")
                    return [self._fallback_categorization(email) for email in emails]
                
                valid_categories = [
                    'high_priority', 'meetings_and_calls', 'action_required', 
                    'newsletters_and_updates', 'personal', 'low_priority'
                ]
                
                # Process and validate each result
                processed_results = []
                for i, result in enumerate(results):
                    if i >= len(emails):  # Skip extra results
                        break
                        
                    # Validate required fields
                    if not all(key in result for key in ['category', 'priority_score', 'reasoning']):
                        logger.warning(f"Missing required fields in JSON for email #{i+1}")
                        processed_results.append(self._fallback_categorization(emails[i]))
                        continue
                    
                    category = result['category']
                    if category not in valid_categories:
                        logger.warning(f"Invalid category '{category}' returned for email #{i+1}")
                        processed_results.append(self._fallback_categorization(emails[i]))
                        continue
                    
                    # Validate priority score is a number between 0 and 1
                    try:
                        priority_score = float(result['priority_score'])
                        if not 0.0 <= priority_score <= 1.0:
                            priority_score = 0.5  # Default if out of range
                    except (ValueError, TypeError):
                        priority_score = 0.5
                    
                    reasoning = str(result.get('reasoning', 'AI analysis completed'))
                    
                    logger.info(f"AI categorized email '{emails[i].get('subject', '')[:50]}...' as {category} (score: {priority_score})")
                    processed_results.append((category, priority_score, reasoning))
                
                # Fill in any missing results with fallback categorization
                while len(processed_results) < len(emails):
                    missing_idx = len(processed_results)
                    processed_results.append(self._fallback_categorization(emails[missing_idx]))
                
                return processed_results
                
            except json.JSONDecodeError as e:
                logger.warning(f"JSON parsing failed for batch: {e}. Response was: {json_text}")
                return [self._fallback_categorization(email) for email in emails]
                
        except Exception as e:
            logger.warning(f"Batch AI analysis failed with error: {e}")
            return [self._fallback_categorization(email) for email in emails]
    
    def _analyze_email_with_ai(self, email: Dict) -> Tuple[str, float, str]:
        """Use AI to analyze email and determine category, priority, and reasoning"""
        if not self.model:
            logger.info("No Qwen model available, using rule-based categorization")
            return self._fallback_categorization(email)
        
        try:
            # Create a more detailed, explicit prompt for the model
            prompt = f"""
You are an email categorization expert. Your task is to analyze the email details below and categorize it.
You MUST respond with ONLY a valid JSON object in the exact format requested at the end.

Email Details:
- Subject: {email.get('subject', 'No subject')}
- From: {email.get('sender', 'Unknown sender')}
- Content Preview: {email.get('snippet', 'No preview')}
- Is Unread: {email.get('is_unread', False)}
- Date: {email.get('date', 'Unknown date')}

Available Categories (choose exactly one):
1. high_priority: For urgent emails that need immediate attention
2. meetings_and_calls: For meeting invites, call schedules, or appointment-related emails
3. action_required: For emails that require a specific action or response, but aren't urgent
4. newsletters_and_updates: For subscription emails, product updates, marketing content
5. personal: For emails that are personal in nature but not urgent
6. low_priority: For emails that can be handled later or are low importance

Your response MUST be ONLY a JSON object in this exact format:
{{"category": "one_of_the_categories_above", "priority_score": 0.1_to_1.0, "reasoning": "Brief explanation of your categorization"}}

Examples of valid responses:
{{"category": "high_priority", "priority_score": 0.9, "reasoning": "Contains urgent deadline requiring immediate action"}}
{{"category": "newsletters_and_updates", "priority_score": 0.3, "reasoning": "Marketing newsletter with no action required"}}
"""
            
            # Attempt to get response with retry logic built into the client
            response = self.model.generate_content(
                prompt, 
                max_tokens=512, 
                temperature=0.3,
                retries=3
            )
            
            # Validate response exists and has content
            if not response or not hasattr(response, 'text') or not response.text:
                logger.warning("Empty response from Qwen model after retries")
                return self._fallback_categorization(email)
            
            response_text = response.text.strip()
            logger.debug(f"Qwen response: {response_text}")
            
            # Try to extract JSON from response (in case there's extra text)
            json_start = response_text.find('{')
            json_end = response_text.rfind('}') + 1
            
            if json_start == -1 or json_end == 0:
                logger.warning("No valid JSON found in response")
                # Try to parse in a more lenient way if possible
                try:
                    import re
                    # Look for patterns like "category": "value"
                    category_match = re.search(r'"category"\s*:\s*"([^"]+)"', response_text)
                    score_match = re.search(r'"priority_score"\s*:\s*([\d.]+)', response_text)
                    reasoning_match = re.search(r'"reasoning"\s*:\s*"([^"]+)"', response_text)
                    
                    if category_match and score_match:
                        category = category_match.group(1)
                        priority_score = float(score_match.group(1))
                        reasoning = reasoning_match.group(1) if reasoning_match else "AI analysis"
                        
                        valid_categories = [
                            'high_priority', 'meetings_and_calls', 'action_required', 
                            'newsletters_and_updates', 'personal', 'low_priority'
                        ]
                        
                        if category in valid_categories and 0 <= priority_score <= 1:
                            logger.info(f"Recovered partial JSON data from malformed response")
                            return category, priority_score, reasoning
                    
                except Exception as e:
                    logger.warning(f"Could not recover data from malformed response: {e}")
                
                return self._fallback_categorization(email)
            
            json_text = response_text[json_start:json_end]
            
            try:
                # Parse JSON with validation
                result = json.loads(json_text)
                
                # Validate required fields
                if not all(key in result for key in ['category', 'priority_score', 'reasoning']):
                    logger.warning("Missing required fields in JSON response")
                    return self._fallback_categorization(email)
                
                # Validate category is valid
                valid_categories = [
                    'high_priority', 'meetings_and_calls', 'action_required', 
                    'newsletters_and_updates', 'personal', 'low_priority'
                ]
                
                category = result['category']
                if category not in valid_categories:
                    logger.warning(f"Invalid category '{category}' returned")
                    return self._fallback_categorization(email)
                
                # Validate priority score is a number between 0 and 1
                try:
                    priority_score = float(result['priority_score'])
                    if not 0.0 <= priority_score <= 1.0:
                        priority_score = 0.5  # Default if out of range
                except (ValueError, TypeError):
                    priority_score = 0.5
                
                reasoning = str(result.get('reasoning', 'AI analysis completed'))
                
                logger.info(f"AI categorized email '{email.get('subject', '')[:50]}...' as {category} (score: {priority_score})")
                return category, priority_score, reasoning
                
            except json.JSONDecodeError as e:
                logger.warning(f"JSON parsing failed: {e}. Response was: {json_text}")
                return self._fallback_categorization(email)
                
        except Exception as e:
            logger.warning(f"AI analysis failed with error: {e}")
            return self._fallback_categorization(email)
    
    def _fallback_categorization(self, email: Dict) -> Tuple[str, float, str]:
        """Fallback categorization when AI is not available"""
        subject = email.get('subject', '').lower()
        sender = email.get('sender', '').lower()
        is_unread = email.get('is_unread', False)
        
        # Priority keywords
        if any(word in subject for word in ['urgent', 'asap', 'critical', 'emergency']):
            return "high_priority", 0.9, "Contains urgent keywords"
        elif any(word in subject for word in ['meeting', 'call', 'zoom', 'appointment']):
            return "meetings_and_calls", 0.7, "Meeting or call related"
        elif any(word in subject for word in ['action', 'required', 'todo', 'task']):
            return "action_required", 0.6, "Appears to require action"
        elif any(word in subject for word in ['newsletter', 'digest', 'update', 'notification']):
            return "newsletters_and_updates", 0.3, "Newsletter or update"
        elif is_unread:
            return "personal", 0.5, "Unread personal email"
        else:
            return "low_priority", 0.2, "Standard email"
    
    def _suggest_email_actions(self, email: Dict, category: str, priority_score: float) -> List[str]:
        """Suggest specific actions for each email"""
        actions = []
        
        if category == "high_priority":
            actions.extend(["πŸ“ž Call sender immediately", "⚑ Respond within 1 hour", "πŸ“Œ Add to priority list"])
        elif category == "meetings_and_calls":
            actions.extend(["πŸ“… Add to calendar", "βœ… Send confirmation", "πŸ“‹ Prepare agenda"])
        elif category == "action_required":
            actions.extend(["✏️ Create task", "⏰ Set reminder", "πŸ“ Draft response"])
        elif category == "newsletters_and_updates":
            actions.extend(["πŸ“– Schedule reading time", "πŸ—‚οΈ Archive after reading"])
        elif priority_score > 0.6:
            actions.extend(["πŸ‘€ Review carefully", "πŸ“ Respond today"])
        else:
            actions.extend(["πŸ“ Archive if not important", "πŸ‘οΈ Quick scan"])
        
        return actions
    
    def _generate_triage_summary(self, triage_results: Dict) -> str:
        """Generate intelligent summary of triage results based on actual email content"""
        total_emails = sum(len(emails) for key, emails in triage_results.items() 
                          if key not in ['analysis_summary', 'recommendations'])
        
        if total_emails == 0:
            return "πŸ“­ **No emails to analyze**\n\nYour inbox is empty or no emails match the search criteria."
        
        # Get specific counts
        high_priority_count = len(triage_results.get('high_priority', []))
        action_required_count = len(triage_results.get('action_required', []))
        meetings_count = len(triage_results.get('meetings_and_calls', []))
        newsletters_count = len(triage_results.get('newsletters_and_updates', []))
        personal_count = len(triage_results.get('personal', []))
        
        # Get specific email subjects for personalized insights
        urgent_subjects = [email['subject'][:30] + "..." for email in triage_results.get('high_priority', [])[:2]]
        action_subjects = [email['subject'][:30] + "..." for email in triage_results.get('action_required', [])[:2]]
        
        # Extract senders for more personalized recommendations
        all_senders = []
        for category in triage_results:
            if category in ['analysis_summary', 'recommendations']:
                continue
            for email in triage_results[category]:
                all_senders.append(self._clean_sender(email.get('sender', 'Unknown')))
        
        top_senders = Counter(all_senders).most_common(3)
        
        # Calculate unread percentage
        unread_count = sum(1 for cat in triage_results.keys() 
                          if cat not in ['analysis_summary', 'recommendations']
                          for email in triage_results[cat] 
                          if email.get('is_unread', False))
        unread_percentage = (unread_count / total_emails * 100) if total_emails > 0 else 0
        
        # Generate personalized summary
        summary = f"""
🧠 **Intelligent Email Triage Analysis**

πŸ“Š **Overview**: Analyzed {total_emails} emails from the last 3 days

"""

        # Personalized urgent section
        if high_priority_count > 0:
            summary += f"🚨 **Immediate Attention**: {high_priority_count} high-priority emails require urgent response\n"
            if urgent_subjects:
                summary += "   β€’ " + "\n   β€’ ".join(f'"{subject}"' for subject in urgent_subjects)
                if high_priority_count > len(urgent_subjects):
                    summary += f"\n   β€’ ...and {high_priority_count - len(urgent_subjects)} more"
            summary += "\n\n"
        else:
            summary += "βœ… **No urgent emails requiring immediate attention**\n\n"

        # Personalized action section
        if action_required_count > 0:
            summary += f"βœ… **Action Items**: {action_required_count} emails need specific actions\n"
            if action_subjects:
                summary += "   β€’ " + "\n   β€’ ".join(f'"{subject}"' for subject in action_subjects)
                if action_required_count > len(action_subjects):
                    summary += f"\n   β€’ ...and {action_required_count - len(action_subjects)} more"
            summary += "\n\n"
        
        # Add meeting info
        if meetings_count > 0:
            summary += f"πŸ“… **Calendar Items**: {meetings_count} meeting-related emails\n\n"
        
        # Add distribution info
        summary += f"πŸ“¦ **Email Distribution**:\n"
        if newsletters_count > 0:
            summary += f"   β€’ Newsletters/Updates: {newsletters_count} ({newsletters_count/total_emails*100:.0f}%)\n"
        if personal_count > 0:
            summary += f"   β€’ Personal: {personal_count} ({personal_count/total_emails*100:.0f}%)\n"
        if action_required_count > 0:
            summary += f"   β€’ Action Required: {action_required_count} ({action_required_count/total_emails*100:.0f}%)\n"
        if high_priority_count > 0:
            summary += f"   β€’ High Priority: {high_priority_count} ({high_priority_count/total_emails*100:.0f}%)\n"
        
        # Add unread status
        summary += f"\nπŸ“¬ **Inbox Status**: {unread_count} unread emails ({unread_percentage:.0f}% of analyzed emails)\n"
        
        # Add top senders if available
        if top_senders:
            summary += f"\nπŸ‘₯ **Top Senders**:\n"
            for sender, count in top_senders:
                summary += f"   β€’ {sender}: {count} emails\n"
        
        # Add AI insights based on actual data
        summary += f"""
πŸ’‘ **AI Insights**: 
- {'High' if unread_percentage > 70 else 'Moderate' if unread_percentage > 30 else 'Low'} unread email ratio ({unread_percentage:.0f}%)
- {'High' if high_priority_count > 3 else 'Normal'} priority workload ({high_priority_count} urgent emails)
- {'Consider' if action_required_count > 5 else 'Manageable'} task delegation for action items ({action_required_count} tasks)
- {top_senders[0][0] if top_senders else 'No single sender'} is your most frequent correspondent ({top_senders[0][1] if top_senders else 0} emails)
"""
        
        return summary
    
    def _generate_workflow_recommendations(self, triage_results: Dict) -> List[str]:
        """Generate intelligent workflow recommendations"""
        recommendations = []
        
        high_priority_count = len(triage_results.get('high_priority', []))
        action_count = len(triage_results.get('action_required', []))
        
        if high_priority_count > 0:
            recommendations.append(f"🚨 Handle {high_priority_count} urgent emails first")
        
        if action_count > 5:
            recommendations.append("πŸ“‹ Consider batching similar action items")
            recommendations.append("⏰ Set aside 2-3 hour block for email processing")
        
        recommendations.extend([
            "πŸ“… Schedule 15-min email review sessions",
            "πŸ”„ Set up automated filters for newsletters",
            "πŸ“± Enable smart notifications for high-priority senders"
        ])
        
        return recommendations
    
    def _update_email_patterns(self, emails: List[Dict]):
        """Update agent memory with email patterns"""
        # Simple pattern tracking
        current_time = datetime.now().isoformat()
        self.memory.email_patterns[current_time] = {
            "total_emails": len(emails),
            "unread_count": sum(1 for e in emails if e.get('is_unread', False)),
            "top_senders": self._get_sender_stats(emails)
        }
    
    def _get_sender_stats(self, emails: List[Dict]) -> Dict[str, int]:
        """Get sender statistics"""
        senders = {}
        for email in emails:
            sender = email.get('sender', 'Unknown')
            senders[sender] = senders.get(sender, 0) + 1
        return dict(sorted(senders.items(), key=lambda x: x[1], reverse=True)[:5])
    
    def proactive_assistant_chat(self, user_message: str, chat_history: List) -> Tuple[str, List]:
        """Enhanced chat with proactive suggestions and agent reasoning"""
        try:
            # Analyze user intent
            intent, confidence = self._analyze_user_intent(user_message)
            
            # Add to chat history first to show user message immediately
            chat_history.append((user_message, None))
            
            # Try to generate smart response with better timeout handling
            try:
                # Use a smaller query for recent emails with a shorter timeout
                logger.info("Fetching recent emails for chat context")
                recent_emails = self.mcp_client.fetch_emails(query="newer_than:3d", max_results=10)
                
                if recent_emails and 'emails' in recent_emails:
                    # Use emails for context-aware response
                    response = self._generate_smart_response_batch(user_message, intent, confidence, recent_emails['emails'][:5])
                else:
                    # Fallback if email fetching fails
                    response = self._handle_intent_fallback(user_message, intent, confidence)
                    
                # Update conversation context
                self.memory.conversation_context.append({
                    "user_message": user_message,
                    "intent": intent,
                    "confidence": confidence,
                    "timestamp": datetime.now().isoformat()
                })
            
            except requests.exceptions.Timeout:
                logger.error(f"Timeout when processing chat response")
                response = f"🧠 **AI Analysis**\nπŸ’­ *Understanding: {intent.replace('_', ' ').title()}*\n\nI apologize, but I'm having trouble connecting to the advanced AI service at the moment. Here's a simplified response based on your query:\n\n{self._handle_intent_fallback(user_message, intent, confidence)}"
            except Exception as e:
                logger.error(f"Error generating chat response: {e}")
                response = f"🧠 **AI Analysis**\nπŸ’­ *Understanding: {intent.replace('_', ' ').title()}*\n\nI apologize, but I encountered an error while analyzing your emails. Let me provide a simple response instead:\n\n{self._handle_intent_fallback(user_message, intent, confidence)}"
            
            # Replace the temporary thinking message with the actual response
            chat_history[-1] = (user_message, response)
            
            return "", chat_history
            
        except Exception as e:
            error_response = f"🧠 **Agent Analysis**\n\n❌ Error: {str(e)}\n\nI apologize for the inconvenience. Please try a different question or check the email connection status."
            
            # Handle the case where chat history might be empty or invalid
            if not chat_history:
                chat_history = []
                
            # Add user message and error response
            chat_history.append((user_message, error_response))
            return "", chat_history
    
    def _generate_smart_response_batch(self, message: str, intent: str, confidence: float, emails: List[Dict]) -> str:
        """Generate intelligent response based on intent analysis and email processing - SINGLE API CALL"""
        
        # Add agent header without confidence score
        response_header = f"🧠 **AI Analysis**\n"
        response_header += f"<span class='detected-intent'>Understanding: {intent.replace('_', ' ').title()}</span>\n\n"
        
        try:
            if self.model and emails:
                logger.info(f"Generating smart response with email context ({len(emails)} emails)")
                
                # Create simplified email context for chat
                email_summaries = []
                for i, email in enumerate(emails[:5]):  # Limit to 5 emails for chat context
                    sender = self._clean_sender(email.get('sender', 'Unknown'))
                    subject = email.get('subject', 'No subject')[:60]  # Limit subject length
                    is_unread = "unread" if email.get('is_unread', False) else "read"
                    
                    email_summaries.append(f"Email {i+1}: \"{subject}\" from {sender} ({is_unread})")
                
                # Create an improved chat prompt with better instructions
                chat_prompt = f"""You are an intelligent email assistant with access to the user's actual emails. The user asked: "{message}"

I've detected their intent as: {intent}

Here are their recent emails for context:
{chr(10).join(email_summaries)}

IMPORTANT GUIDELINES:
1. Be concise but informative - keep responses under 250 words
2. Reference specific emails by subject or sender when relevant
3. Format your response with clear sections and bullet points when appropriate
4. Provide actionable advice based on the actual emails
5. Use a friendly, helpful tone
6. For search queries, mention specific matching emails
7. For summaries, group similar emails together
8. For workflow questions, suggest specific organization strategies

Make your response personalized to their actual emails. Be direct and helpful without unnecessary explanations.
"""
                
                logger.info(f"Sending chat request to Qwen API with {len(emails)} email context")
                response = self.model.generate_content(
                    chat_prompt, 
                    max_tokens=512,
                    temperature=0.7,
                    strip_thinking=True,  # Clean response for chat
                    timeout=120.0
                )
                
                if response and hasattr(response, 'text') and response.text:
                    ai_response = response.text.strip()
                    logger.info(f"Received chat response: {len(ai_response)} chars")
                    
                    # Make sure we have actual content
                    if len(ai_response) > 10:
                        # Add agent analysis header
                        final_response = response_header + ai_response
                        return final_response
                    else:
                        logger.warning("AI response too short, using fallback")
                        return response_header + self._handle_intent_fallback(message, intent, confidence)
                else:
                    # If we got no response, fall back to simpler intent handling
                    logger.warning("Empty response from Qwen for chat, using fallback")
                    return response_header + self._handle_intent_fallback(message, intent, confidence)
            else:
                # No model or emails available
                logger.info("Using fallback response (no model or emails available)")
                return response_header + self._handle_intent_fallback(message, intent, confidence)
                
        except requests.exceptions.Timeout:
            logger.warning(f"Timeout in Qwen response generation - using fallback")
            return response_header + "I'll help with your request using my basic capabilities:\n\n" + self._handle_intent_fallback(message, intent, confidence)
        except Exception as e:
            logger.warning(f"Error generating smart response: {e}")
            return response_header + self._handle_intent_fallback(message, intent, confidence)
    
    def _analyze_user_intent(self, message: str) -> Tuple[str, float]:
        """Analyze user intent and confidence level"""
        message_lower = message.lower()
        
        # Intent patterns with confidence scores
        intent_patterns = {
            "email_search": (["find", "search", "look for", "show me"], 0.8),
            "email_summary": (["summarize", "summary", "overview", "brief"], 0.9),
            "workflow_automation": (["automate", "organize", "cleanup", "triage"], 0.7),
            "meeting_prep": (["meeting", "call", "appointment", "schedule"], 0.8),
            "priority_focus": (["urgent", "important", "priority", "critical"], 0.9),
            "general_help": (["help", "how to", "what can", "assistance"], 0.6)
        }
        
        best_intent = "general_help"
        best_confidence = 0.3
        
        for intent, (keywords, base_confidence) in intent_patterns.items():
            matches = sum(1 for keyword in keywords if keyword in message_lower)
            if matches > 0:
                confidence = min(base_confidence + (matches - 1) * 0.1, 1.0)
                if confidence > best_confidence:
                    best_intent = intent
                    best_confidence = confidence
        
        return best_intent, best_confidence
    
    def _generate_smart_response(self, message: str, intent: str, confidence: float) -> str:
        """Generate intelligent response based on intent analysis using real email data"""
        
        # Add header without confidence
        response_header = f"🧠 **AI Analysis**\n"
        response_header += f"<span class='detected-intent'>Understanding: {intent.replace('_', ' ').title()}</span>\n\n"
        
        try:
            # Get real email context for better responses
            recent_emails = self.mcp_client.fetch_emails(query="newer_than:7d", max_results=15)
            
            if self.model and recent_emails and 'emails' in recent_emails:
                # Use Qwen with real email context
                return self._generate_qwen_response(message, intent, confidence, recent_emails['emails'])
            else:
                # Fallback to intent-based handling with real data
                if intent == "email_search" and confidence > 0.7:
                    return response_header + self._handle_search_intent(message)
                elif intent == "email_summary" and confidence > 0.8:
                    return response_header + self._handle_summary_intent(message)
                elif intent == "workflow_automation":
                    return response_header + self._handle_automation_intent(message)
                elif intent == "meeting_prep":
                    return response_header + self._handle_meeting_intent(message)
                elif intent == "priority_focus":
                    return response_header + self._handle_priority_intent(message)
                else:
                    return response_header + self._handle_general_intent(message)
                
        except Exception as e:
            return f"Error generating smart response: {str(e)}"
    
    def _handle_search_intent(self, message: str) -> str:
        """Handle search-related queries"""
        # Extract search terms from message
        search_terms = self._extract_search_terms(message)
        
        if search_terms:
            # Execute search
            results = self.mcp_client.search_emails(
                subject_contains=" OR ".join(search_terms),
                max_results=10
            )
            
            if results and 'emails' in results:
                count = len(results['emails'])
                return f"πŸ” **Search Results**: Found {count} emails matching your criteria.\n\n" + \
                       f"**Search Terms Used**: {', '.join(search_terms)}\n\n" + \
                       "πŸ“§ **Top Matches**:\n" + \
                       "\n".join([f"β€’ {email['subject']} (from {self._clean_sender(email['sender'])})" 
                                 for email in results['emails'][:3]])
        
        return "πŸ” I can help you search your emails! Try being more specific, like:\n" + \
               "β€’ 'Find emails from John about the project'\n" + \
               "β€’ 'Search for meeting emails from last week'\n" + \
               "β€’ 'Show me emails with attachments'"
    
    def _handle_summary_intent(self, message: str) -> str:
        """Handle summary-related queries"""
        # Determine time period
        if "week" in message.lower():
            days = 7
        elif "month" in message.lower():
            days = 30
        elif "today" in message.lower():
            days = 1
        else:
            days = 3  # Default
        
        summary_result = self.mcp_client.summarize_emails(days=days, include_body=True)
        
        if summary_result:
            return f"πŸ“Š **Email Summary - Last {days} Days**\n\n" + \
                   f"πŸ“§ Total: {summary_result.get('total_emails', 0)} emails\n" + \
                   f"πŸ”΄ Unread: {summary_result.get('unread_count', 0)} emails\n\n" + \
                   "πŸ’‘ **Agent Recommendation**: Focus on unread emails first for maximum efficiency."
        
        return f"πŸ“Š No emails found for the last {days} days."
    
    def _handle_automation_intent(self, message: str) -> str:
        """Handle workflow automation queries"""
        return """πŸ€– **Email Organization Options**:

πŸ“Š **Email Analysis** - Get insights about your emails
🎯 **Priority Focus** - Focus on high-priority emails  
🧹 **Inbox Management** - Get organization suggestions
πŸ“… **Meeting Preparation** - Find meeting-related emails

πŸ’‘ **Try asking**: "Help me organize my inbox" or "Analyze my emails and provide recommendations"
"""
    
    def _handle_meeting_intent(self, message: str) -> str:
        """Handle meeting-related queries"""
        meeting_workflow = self._meeting_preparation_workflow()
        return f"πŸ“… **Meeting Assistant Activated**\n\n{meeting_workflow}"
    
    def _handle_priority_intent(self, message: str) -> str:
        """Handle priority/urgent email queries"""
        priority_workflow = self._priority_focus_workflow()
        return f"🚨 **Priority Mode Activated**\n\n{priority_workflow}"
    
    def _handle_general_intent(self, message: str) -> str:
        """Handle general queries with proactive suggestions"""
        return """πŸ€– **How can I help you today?**

I'm your intelligent email assistant with advanced capabilities:

🧠 **Smart Features**:
β€’ Intent recognition and context awareness
β€’ Automated email triage and categorization  
β€’ Intelligent recommendations
β€’ Email pattern analysis

πŸ’¬ **Try asking me**:
β€’ "Show me my most important emails"
β€’ "Help me organize my inbox"  
β€’ "What emails do I have from [specific sender]?"
β€’ "Summarize emails from this week"

🎯 **Proactive Suggestion**: Let me analyze your emails to provide personalized recommendations!"""
    
    def _extract_search_terms(self, message: str) -> List[str]:
        """Extract search terms from user message"""
        # Simple keyword extraction
        words = message.lower().split()
        stop_words = {'find', 'search', 'show', 'me', 'my', 'from', 'about', 'with', 'for', 'the', 'a', 'an'}
        return [word for word in words if word not in stop_words and len(word) > 2]
    
    def _clean_sender(self, sender: str) -> str:
        """Clean sender email for display"""
        if '<' in sender:
            email_match = re.search(r'<([^>]+)>', sender)
            if email_match:
                return email_match.group(1)
        return sender

    def _generate_qwen_response(self, message: str, intent: str, confidence: float, emails: List[Dict]) -> str:
        """Generate response using Qwen with real email context"""
        try:
            # Prepare email context for Qwen - MINIMIZE CONTENT TO AVOID TIMEOUT
            email_context = []
            # Include at most 3 emails to avoid timeout issues
            for email in emails[:2]:  # Further reduced from 3 to 2
                email_context.append({
                    'subject': email.get('subject', 'No subject')[:20],  # Further limit subject length
                    'sender': self._clean_sender(email.get('sender', 'Unknown')),
                    'is_unread': email.get('is_unread', False)
                    # Removed more fields to reduce prompt size
                })
            
            # Create an even simpler system prompt to avoid timeouts
            system_prompt = f"""
You are an email assistant. Answer the user's query about their emails briefly.
USER QUERY: "{message}"
INTENT: {intent}
EMAIL SAMPLE: {len(email_context)} emails
"""
            
            # Use a shorter max_tokens and higher temperature for faster responses
            response = self.model.generate_content(
                system_prompt, 
                max_tokens=512,  # Reduced from 1024 to 512
                temperature=0.7,
                strip_thinking=True,
                retries=2
            )
            
            if response and hasattr(response, 'text') and response.text:
                ai_response = response.text.strip()
                
                # Add header without confidence
                final_response = f"🧠 **AI Analysis**\n"
                final_response += f"<span class='detected-intent'>Understanding: {intent.replace('_', ' ').title()}</span>\n\n"
                final_response += ai_response
                
                return final_response
            else:
                # If we got no response, fall back to simpler intent handling
                logger.warning("Empty response from Qwen, using fallback")
                return self._handle_intent_fallback(message, intent, confidence)
                
        except requests.exceptions.Timeout:
            logger.warning(f"Timeout in Qwen response generation - using fallback")
            response_header = f"🧠 **AI Analysis**\n"
            response_header += f"<span class='detected-intent'>Understanding: {intent.replace('_', ' ').title()}</span>\n\n"
            response_header += "I'll help with your request using my basic capabilities:\n\n"
            return response_header + self._handle_intent_fallback(message, intent, confidence)
        except Exception as e:
            logger.warning(f"Qwen response generation failed: {e}")
            return self._handle_intent_fallback(message, intent, confidence)

    def _handle_intent_fallback(self, message: str, intent: str, confidence: float) -> str:
        """Fallback intent handling when Qwen is not available"""
        response_header = f"🧠 **AI Analysis**\n"
        response_header += f"<span class='detected-intent'>Understanding: {intent.replace('_', ' ').title()}</span>\n\n"
        
        if intent == "email_search" and confidence > 0.7:
            return response_header + self._handle_search_intent(message)
        elif intent == "email_summary" and confidence > 0.8:
            return response_header + self._handle_summary_intent(message)
        elif intent == "workflow_automation":
            return response_header + self._handle_automation_intent(message)
        elif intent == "meeting_prep":
            return response_header + self._handle_meeting_intent(message)
        elif intent == "priority_focus":
            return response_header + self._handle_priority_intent(message)
        else:
            return response_header + self._handle_general_intent(message)

    def get_connection_status(self) -> Tuple[str, str]:
        """Get the current connection status of the MCP client"""
        try:
            # Test connection by attempting to fetch a small number of emails
            test_result = self.mcp_client.fetch_emails(query="newer_than:1d", max_results=1)
            
            if test_result and 'emails' in test_result:
                total_count = test_result.get('total_count', 0)
                return f"Connected βœ… ({total_count} emails accessible)", "success"
            else:
                return "Connected but no emails found πŸ“­", "warning"
                
        except Exception as e:
            return f"Connection Error ❌ ({str(e)[:50]}...)", "error"

    def _display_triage_results(self, triage_results: Dict) -> str:
        """Format triage results for beautiful, readable display in Gradio"""
        if "error" in triage_results:
            return f"❌ **Error:** {triage_results['error']}"
        
        # Start with a clean, formatted header
        output = "# 🧠 **AI Email Analysis Results**\n\n"
        
        # Add the analysis summary with better formatting
        summary = triage_results.get("analysis_summary", "")
        if summary:
            output += summary + "\n\n"
            output += "---\n\n"  # Add separator
        
        # Count emails by category for overview
        categories = [
            ("high_priority", "🚨 **High Priority**", "Urgent attention needed"),
            ("meetings_and_calls", "πŸ“… **Meetings & Calls**", "Calendar items"),
            ("action_required", "βœ… **Action Required**", "Tasks to complete"),
            ("newsletters_and_updates", "πŸ“° **Newsletters**", "Updates & info"),
            ("personal", "πŸ‘€ **Personal**", "Personal messages"),
            ("low_priority", "πŸ“ **Low Priority**", "Can wait")
        ]
        
        # Count total emails processed
        total_processed = sum(len(triage_results.get(cat, [])) for cat, _, _ in categories)
        
        if total_processed == 0:
            return output + "πŸ“­ **No emails found to analyze.**"
        
        # Add quick stats overview with visual bar chart
        output += f"## πŸ“Š **Quick Overview** ({total_processed} emails analyzed)\n\n"
        
        # Create a visual bar chart representation
        output += "| Category | Count | Distribution |\n"
        output += "|----------|-------|-------------|\n"
        
        for category_key, category_icon, category_desc in categories:
            count = len(triage_results.get(category_key, []))
            if total_processed > 0:
                percentage = (count / total_processed * 100)
                # Create a visual bar using emoji
                bar_length = int(percentage / 5)  # 5% per character
                bar = "β–ˆ" * bar_length if bar_length > 0 else ""
                output += f"| {category_icon} | {count} | {bar} {percentage:.0f}% |\n"
        
        output += "\n---\n\n"
        
        # Show detailed breakdown for important categories
        priority_categories = ["high_priority", "meetings_and_calls", "action_required"]
        
        for category_key, category_title, category_desc in categories:
            emails = triage_results.get(category_key, [])
            if not emails:
                continue
                
            # Only show full details for priority categories, summary for others
            show_full_details = category_key in priority_categories
            
            output += f"## {category_title} ({len(emails)} emails)\n"
            output += f"*{category_desc}*\n\n"
            
            if show_full_details:
                # Show detailed view for important emails
                for i, email in enumerate(emails[:5]):  # Increased from 3 to 5 emails
                    priority_score = email.get('priority_score', 0.5)
                    priority_icon = "πŸ”₯" if priority_score > 0.8 else "⚠️" if priority_score > 0.6 else "πŸ“Œ"
                    
                    subject = email.get('subject', 'No subject')
                    sender = self._clean_sender(email.get('sender', 'Unknown'))
                    
                    # Truncate for readability
                    if len(subject) > 60:
                        subject = subject[:57] + "..."
                    if len(sender) > 35:
                        sender = sender[:32] + "..."
                    
                    output += f"### {priority_icon} {subject}\n"
                    output += f"πŸ“€ **From:** {sender}  |  ⭐ **Priority:** {priority_score:.1f}/1.0\n\n"
                    
                    # Add AI reasoning if available - improved formatting
                    reasoning = email.get('ai_reasoning', '')
                    if reasoning and len(reasoning) > 5:
                        output += f"🧠 **AI Analysis:** {reasoning}\n\n"
                    
                    # Add suggested actions with better formatting
                    actions = email.get('suggested_actions', [])
                    if actions:
                        output += "πŸ’‘ **Suggested Actions:**\n"
                        for action in actions[:3]:  # Limit to 3 actions
                            output += f"- {action}\n"
                        output += "\n"
                    
                    output += "---\n\n"
                
                # Show count if there are more emails
                if len(emails) > 5:
                    output += f"*...and {len(emails) - 5} more emails in this category*\n\n"
            
            else:
                # Show summary view for less important categories
                output += "<div class='email-summary-table'>\n\n"
                output += "| Subject | From | Priority |\n"
                output += "|---------|------|----------|\n"
                
                for email in emails[:5]:  # Show up to 5 emails
                    subject = email.get('subject', 'No subject')
                    if len(subject) > 40:
                        subject = subject[:37] + "..."
                    
                    sender = self._clean_sender(email.get('sender', 'Unknown'))
                    if len(sender) > 25:
                        sender = sender[:22] + "..."
                    
                    priority = email.get('priority_score', 0.5)
                    priority_icon = "πŸ”₯" if priority > 0.8 else "⚠️" if priority > 0.6 else "πŸ“Œ"
                    
                    output += f"| {subject} | {sender} | {priority_icon} {priority:.1f} |\n"
                
                output += "\n</div>\n\n"
                
                if len(emails) > 5:
                    output += f"*...and {len(emails) - 5} more emails in this category*\n\n"
        
        # Add recommendations section with better formatting
        recommendations = triage_results.get("recommendations", [])
        if recommendations:
            output += "---\n\n"
            output += "## πŸ’‘ **AI Recommendations**\n\n"
            for i, rec in enumerate(recommendations[:5], 1):  # Limit to 5 recommendations
                output += f"{i}. {rec}\n"
            output += "\n"
        
        # Add concise next steps with better visual separation
        high_count = len(triage_results.get('high_priority', []))
        action_count = len(triage_results.get('action_required', []))
        
        output += "---\n\n"
        output += "## 🎯 **What to Do Next**\n\n"
        
        output += "<div class='next-steps'>\n\n"
        
        if high_count > 0:
            output += f"1. 🚨 **URGENT:** Handle {high_count} high-priority emails first\n\n"
        
        if action_count > 0:
            output += f"2. βœ… **TODAY:** Complete {action_count} action items\n\n"
        
        output += f"3. πŸ“… **SCHEDULE:** Review meeting emails and update calendar\n\n"
        output += f"4. πŸ—‚οΈ **ORGANIZE:** Archive newsletters and low-priority items\n\n"
        
        output += "</div>\n\n"
        
        output += "---\n\n"
        output += "*πŸ€– Analysis powered by Qwen AI β€’ Results based on your actual email content*"
        
        return output

# Create the enhanced Gradio interface
def create_enhanced_gradio_interface(modal_api_url: str = None):
    """Create the enhanced Gradio interface for the Gmail AI Agent"""
    
    # Use environment variable if no URL provided
    modal_api_url = modal_api_url or MODAL_API_URL
    
    # Initialize the agent
    agent = EnhancedGmailAgent(modal_api_url=modal_api_url)
    
    # Check if we have valid credentials
    mcp_status, model_status = agent.get_connection_status()
    
    # Theme configuration
    theme = gr.Theme(
        primary_hue="indigo",
        secondary_hue="blue",
        neutral_hue="slate",
    )
    
    # Custom CSS for better styling
    custom_css = """
    /* ... existing code ... */
    """
    
    with gr.Blocks(theme=theme, title="Enhanced Gmail AI Agent - Track 3") as app:
        
        # Enhanced Header
        gr.HTML("""
        <div class="main-header">
            <h1>πŸ€– Enhanced Gmail AI Agent</h1>
            <p>Track 3: Sophisticated Agent Behaviors & Workflow Automation</p>
            <p style="font-size: 1.1rem; margin-top: 10px;">Intelligent Decision-Making β€’ Workflow Automation β€’ Proactive Assistance</p>
        </div>
        """)
        
        # Warning about initial response time
        gr.HTML("""
        <div style="background-color: #FF9800; color: #000000; padding: 15px; border-radius: 5px; margin-bottom: 20px; border: 2px solid #FF5722; box-shadow: 0 2px 5px rgba(0,0,0,0.2);">
            <h3 style="margin-top: 0; font-size: 1.3rem; color: #000000;">⚠️ IMPORTANT: Initial Loading Time</h3>
            <p style="font-size: 1.1rem; font-weight: 500; margin: 10px 0;">On first run, AI responses may take <strong style="color: #D32F2F; font-size: 1.2rem;">120-200 seconds</strong> because the Qwen LLM is hosted on Modal and requires time for cold start.</p>
            <p style="font-size: 1.1rem;">Subsequent requests will be much faster after the initial cold start. Please be patient during your first interaction.</p>
        </div>
        """)
        
        # Status section with Qwen model status
        with gr.Row():
            with gr.Column():
                status_text = gr.HTML(elem_classes=["status-card"])
                
                def update_status():
                    email_status, email_status_type = agent.get_connection_status()
                    
                    # Add Qwen model status
                    qwen_status = agent.model_status if hasattr(agent, 'model_status') else "Unknown"
                    qwen_class = "status-connected" if agent.model else "status-error"
                    
                    return f'''<div class="status-card" style="background-color: #1A237E; color: white; padding: 12px; border-radius: 5px; margin-bottom: 15px; box-shadow: 0 2px 5px rgba(0,0,0,0.2);">
                        <div style="font-size: 1.1rem; font-weight: bold; margin-bottom: 5px;">🧠 Qwen Model Status: <span style="color: {'#4CAF50' if agent.model else '#F44336'};">{qwen_status}</span></div>
                        <p style="margin: 5px 0; font-size: 0.9rem;">Note: The Qwen API will be tested when you first use an AI feature</p>
                    </div>'''
                
                status_text.value = update_status()
        
        with gr.Tabs() as tabs:
            
            # Intelligent Triage Tab with loading
            with gr.Tab("🧠 Intelligent Triage"):
                with gr.Column(elem_classes=["content-card"]):
                    gr.HTML('<h2 class="section-header">🧠 AI-Powered Email Triage & Analysis</h2>')
                    
                    gr.HTML("""
                    <div class="info-box">
                        <h3>✨ Smart Email Analysis</h3>
                        <p>The agent analyzes your emails using AI to categorize, prioritize, and suggest specific actions. Each email gets a priority score and reasoning.</p>
                        <p><strong>⏱️ Expected Time:</strong> 20-30 seconds for thorough analysis</p>
                    </div>
                    """)
                    
                    # First-run warning
                    gr.HTML("""
                    <div style="background-color: #FF9800; color: #000000; padding: 12px; border-radius: 5px; margin-bottom: 15px; border: 2px solid #FF5722; box-shadow: 0 2px 5px rgba(0,0,0,0.2);">
                        <p style="margin: 0; font-weight: 600; font-size: 1rem;"><span style="font-size: 1.2rem;">⚠️</span> <strong>IMPORTANT:</strong> First-time AI operations may take <strong style="color: #D32F2F;">120-200 seconds</strong> due to Modal cold start.</p>
                    </div>
                    """)
                    
                    with gr.Row():
                        max_emails_triage = gr.Slider(
                            minimum=10, maximum=50, value=20, step=5,
                            label="πŸ“Š Emails to Analyze",
                            info="More emails = more thorough analysis but longer wait time"
                        )
                        triage_btn = gr.Button("🧠 Run Intelligent Triage", variant="primary", size="lg")
                    
                    # Loading state for triage
                    triage_loading = gr.HTML(visible=False)
                    
                    # Updated to use a scrollable container with proper styling
                    triage_output = gr.Markdown(
                        label="🎯 Triage Results",
                        value="Click 'Run Intelligent Triage' to see AI-powered email analysis with specific recommendations",
                        elem_classes=["triage-results"],
                        show_label=True
                    )
                    
                    def run_triage_with_loading(max_emails):
                        loading_html = f"""
                        <div class="loading-container">
                            <div class="loading-spinner"></div>
                            <h3>🧠 Analyzing Your {max_emails} Most Recent Emails...</h3>
                            <p>AI is categorizing, prioritizing, and generating recommendations</p>
                            <div class="progress-bar">
                                <div class="progress-fill"></div>
                            </div>
                            <p style="color: #666; font-size: 14px;">⏱️ This usually takes 20-30 seconds β€’ Please wait patiently</p>
                            <p style="color: #888; font-size: 12px;">πŸ“Š Processing: Fetch emails β†’ AI analysis β†’ Priority scoring β†’ Recommendations</p>
                        </div>
                        """
                        return (
                            gr.update(value=loading_html, visible=True),
                            gr.update(visible=False),
                            gr.update(interactive=False)
                        )
                    
                    def run_triage_complete(max_emails):
                        results = agent.intelligent_email_triage(max_emails)
                        if "error" in results:
                            output = f"❌ **Error:** {results['error']}"
                        else:
                            # Use the beautifully formatted display instead of manual formatting
                            output = results.get("formatted_display", "Analysis complete but no formatted output available.")
                        
                        return (
                            gr.update(visible=False),
                            gr.update(value=output, visible=True),
                            gr.update(interactive=True)
                        )
                    
                    triage_btn.click(
                        run_triage_with_loading,
                        inputs=[max_emails_triage],
                        outputs=[triage_loading, triage_output, triage_btn]
                    ).then(
                        run_triage_complete,
                        inputs=[max_emails_triage],
                        outputs=[triage_loading, triage_output, triage_btn]
                    )
            
            # Proactive AI Assistant Tab
            with gr.Tab("πŸ€– Proactive Assistant"):
                with gr.Column(elem_classes=["content-card"]):
                    gr.HTML('<h2 class="section-header">πŸ€– Intelligent AI Assistant</h2>')
                    
                    gr.HTML("""
                    <div class="info-box">
                        <h3>🧠 Advanced AI Capabilities</h3>
                        <p>This AI assistant analyzes your <strong>actual email data</strong> using Qwen model to provide personalized, specific recommendations:</p>
                        <ul>
                            <li><strong>Intent Recognition:</strong> Understands what you want with confidence scoring</li>
                            <li><strong>Real Email Analysis:</strong> Uses your actual recent emails for context</li>
                            <li><strong>Specific Recommendations:</strong> Mentions actual email subjects and senders</li>
                            <li><strong>Proactive Suggestions:</strong> Based on your email patterns and priorities</li>
                        </ul>
                    </div>
                    """)
                    
                    # First-run warning
                    gr.HTML("""
                    <div style="background-color: #FF9800; color: #000000; padding: 12px; border-radius: 5px; margin-bottom: 15px; border: 2px solid #FF5722; box-shadow: 0 2px 5px rgba(0,0,0,0.2);">
                        <p style="margin: 0; font-weight: 600; font-size: 1rem;"><span style="font-size: 1.2rem;">⚠️</span> <strong>IMPORTANT:</strong> First-time AI operations may take <strong style="color: #D32F2F;">120-200 seconds</strong> due to Modal cold start.</p>
                    </div>
                    """)
                    
                    # Improved chatbot with proper scrolling and styling
                    with gr.Column(elem_classes=["chat-container"]):
                        chatbot = gr.Chatbot(
                            height=500,
                            container=True,
                            value=[(None, "πŸ€– **Welcome to your Enhanced Email Assistant!**\n\nI'm powered by advanced AI and can analyze your actual emails to provide specific, personalized recommendations.\n\n⚠️ **IMPORTANT: First-time responses may take 120-200 seconds** due to the Qwen model's cold start on Modal. Please be patient!\n\nπŸ’‘ **Try asking me:**\nβ€’ \"What emails should I focus on today?\"\nβ€’ \"Help me organize my inbox based on my recent emails\"\nβ€’ \"Show me my most important unread emails\"\nβ€’ \"Summarize my emails from this week\"\n\nI'll analyze your real email data and give you specific advice! ✨")],
                            elem_classes=["enhanced-chatbot", "chat-messages"]
                        )
                        
                        with gr.Row(elem_classes=["chat-input-container"]):
                            chat_input = gr.Textbox(
                                placeholder="Ask me about your emails or request email analysis...",
                                scale=4,
                                lines=2,
                                max_lines=8,
                                elem_classes=["enhanced-input"],
                                autofocus=True,
                                show_label=False
                            )
                            chat_send = gr.Button("πŸ“€ Send", variant="primary", scale=1, elem_classes=["send-button"])
                    
                    chat_send.click(
                        agent.proactive_assistant_chat,
                        inputs=[chat_input, chatbot],
                        outputs=[chat_input, chatbot]
                    )
                    
                    chat_input.submit(
                        agent.proactive_assistant_chat,
                        inputs=[chat_input, chatbot],
                        outputs=[chat_input, chatbot]
                    )
            
        # Enhanced Footer
        gr.HTML("""
        <div class="enhanced-footer">
            <h3>πŸ† Track 3: Enhanced Agentic Demo Features</h3>
            <p>
                ✨ <strong>Specific Email Recommendations</strong> β€’ 
                πŸ”„ <strong>Real Data Analysis</strong> β€’ 
                🧠 <strong>Qwen-Powered Intelligence</strong>
            </p>
            <p style="font-size: 14px;">
                Enhanced with real-time email analysis, smart loading states, and beautiful UI design
            </p>
        </div>
        """)
    
    return app

if __name__ == "__main__":
    print("πŸš€ Starting Enhanced Gmail AI Agent (Track 3)")
    print("🧠 Features: Intelligent Triage | Smart Workflows | Proactive Assistant")
    
    # Get Modal API URL from environment variable
    modal_api_url = MODAL_API_URL
    if modal_api_url:
        print(f"πŸ“‘ Using Modal API URL from environment: {modal_api_url}")
    else:
        print("⚠️ No Modal API URL found in environment variables. Some features may be limited.")
    
    app = create_enhanced_gradio_interface(modal_api_url=modal_api_url)
    app.launch(
        server_name="0.0.0.0",  # Use 0.0.0.0 to allow external connections (needed for Hugging Face Spaces)
        server_port=7860,  # Use port 7860 for Hugging Face Spaces
        share=False,
        show_error=True
    )

# Create the Gradio app for Hugging Face Spaces
app = create_enhanced_gradio_interface(modal_api_url=MODAL_API_URL)