Spaces:
Running
Running
File size: 32,644 Bytes
232e999 d4f154f 232e999 d4f154f 232e999 d4f154f 232e999 d4f154f 232e999 d4f154f 232e999 d4f154f 232e999 d4f154f 232e999 d4f154f 232e999 d4f154f 232e999 d4f154f 232e999 d4f154f 232e999 d4f154f 232e999 d4f154f 232e999 d4f154f 232e999 d4f154f 232e999 d4f154f 232e999 d4f154f 232e999 d4f154f 232e999 d4f154f 232e999 d4f154f 232e999 d4f154f 232e999 d4f154f 232e999 d4f154f 232e999 d4f154f 232e999 d4f154f 232e999 d4f154f 232e999 d4f154f 232e999 d4f154f 232e999 d4f154f 232e999 d4f154f 232e999 d4f154f 232e999 d4f154f 232e999 d4f154f 232e999 d4f154f 232e999 d4f154f 232e999 d4f154f 232e999 d4f154f 232e999 d4f154f 232e999 d4f154f 232e999 d4f154f 232e999 d4f154f 232e999 d4f154f 232e999 d4f154f 232e999 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 |
#!/usr/bin/env python3
"""
Enhanced GlucoBuddy Mistral Chat Integration
Improved rate limit handling and fallback strategies
"""
import os
import json
import logging
import sys
import time
from typing import Any, Dict, List, Optional, Union
from datetime import datetime, timedelta
import pandas as pd
from dataclasses import asdict
import requests
import random
import numpy as np
import warnings
# Load environment variables from .env file
from dotenv import load_dotenv
load_dotenv()
# Suppress pandas warnings
warnings.filterwarnings('ignore', category=RuntimeWarning)
warnings.filterwarnings('ignore', category=FutureWarning)
from apifunctions import (
DexcomAPI,
GlucoseAnalyzer,
DEMO_USERS,
DemoUser,
format_glucose_data_for_display
)
# Setup logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Get configuration from environment variables
MISTRAL_API_KEY = os.getenv("MISTRAL_API_KEY")
MISTRAL_AGENT_ID = os.getenv("MISTRAL_AGENT_ID")
ENVIRONMENT = os.getenv("ENVIRONMENT", "development")
DEBUG = os.getenv("DEBUG", "false").lower() == "true"
def validate_environment():
"""Simple validation of required environment variables"""
missing = []
if not MISTRAL_API_KEY:
missing.append("MISTRAL_API_KEY")
if missing:
print("β Missing required environment variables:")
for var in missing:
print(f" - {var}")
print("\nπ‘ Setup instructions:")
if os.getenv("SPACE_ID"): # Hugging Face Space detection
print("π€ For Hugging Face Spaces:")
print(" 1. Go to Space settings")
print(" 2. Add Repository secrets:")
print(" 3. Set MISTRAL_API_KEY to your API key")
else:
print("π» For local development:")
print(" 1. Create a .env file:")
print(" 2. Add: MISTRAL_API_KEY=your_api_key_here")
print(" 3. Add: MISTRAL_AGENT_ID=your_agent_id_here")
return False
print("β
Environment validation passed!")
if MISTRAL_AGENT_ID:
print("β
Agent ID configured")
else:
print("β οΈ No agent ID - will use standard chat completion")
return True
class GlucoseDataGenerator:
"""Generate realistic mock glucose data for testing and demo purposes"""
@staticmethod
def create_realistic_pattern(days: int = 14, user_type: str = "normal") -> List[Dict]:
"""Generate glucose data with realistic patterns"""
data_points = []
start_time = datetime.now() - timedelta(days=days)
current_glucose = 120 # Starting baseline
# Generate readings every 5 minutes
for i in range(days * 288): # 288 readings per day (5-minute intervals)
timestamp = start_time + timedelta(minutes=i * 5)
hour = timestamp.hour
# Simulate daily patterns
daily_variation = GlucoseDataGenerator._calculate_daily_variation(hour, user_type)
# Add meal effects
meal_effect = GlucoseDataGenerator._calculate_meal_effects(hour, i)
# Random variation
random_noise = random.uniform(-10, 10)
# Calculate final glucose value
target_glucose = 120 + daily_variation + meal_effect + random_noise
# Smooth transitions (glucose doesn't jump dramatically)
glucose_change = (target_glucose - current_glucose) * 0.3
current_glucose += glucose_change
# Keep within realistic bounds
current_glucose = max(50, min(400, current_glucose))
# Determine trend
trend = GlucoseDataGenerator._calculate_trend(glucose_change)
data_points.append({
'systemTime': timestamp.isoformat(),
'displayTime': timestamp.isoformat(),
'value': round(current_glucose),
'trend': trend,
'realtimeValue': round(current_glucose),
'smoothedValue': round(current_glucose)
})
return data_points
@staticmethod
def _calculate_daily_variation(hour: int, user_type: str) -> float:
"""Calculate glucose variation based on time of day"""
if user_type == "dawn_phenomenon":
if 4 <= hour <= 8:
return 30 + 20 * np.sin((hour - 4) * np.pi / 4)
return 10 * np.sin((hour - 12) * np.pi / 12)
elif user_type == "night_low":
if 22 <= hour or hour <= 6:
return -20
return 5 * np.sin((hour - 12) * np.pi / 12)
else: # Normal pattern
return 15 * np.sin((hour - 6) * np.pi / 12)
@staticmethod
def _calculate_meal_effects(hour: int, reading_index: int) -> float:
"""Calculate glucose spikes from meals"""
meal_times = [7, 12, 18] # Breakfast, lunch, dinner
meal_effect = 0
for meal_time in meal_times:
if abs(hour - meal_time) <= 2:
time_since_meal = abs(hour - meal_time)
if time_since_meal <= 1:
meal_effect += 40 * (1 - time_since_meal)
else:
meal_effect += 20 * (2 - time_since_meal)
return meal_effect
@staticmethod
def _calculate_trend(glucose_change: float) -> str:
"""Determine trend arrow based on glucose change"""
if glucose_change > 5:
return 'singleUp'
elif glucose_change > 2:
return 'fortyFiveUp'
elif glucose_change < -5:
return 'singleDown'
elif glucose_change < -2:
return 'fortyFiveDown'
else:
return 'flat'
class EnhancedMistralAPIClient:
"""Enhanced Mistral API client with better rate limit handling"""
def __init__(self, api_key: str = None, agent_id: str = None):
self.api_key = api_key or MISTRAL_API_KEY
self.agent_id = agent_id or MISTRAL_AGENT_ID
if not self.api_key:
raise ValueError("Mistral API key is required. Please set MISTRAL_API_KEY environment variable.")
self.base_url = "https://api.mistral.ai/v1"
self.session = requests.Session()
self.session.headers.update({
"Authorization": f"Bearer {self.api_key}",
"Content-Type": "application/json"
})
# Rate limit handling
self.last_request_time = 0
self.min_request_interval = 1.0 # Minimum seconds between requests
# Model fallback chain
self.model_priority = [
"mistral-large-latest",
"mistral-medium-latest",
"mistral-small-latest",
"mistral-tiny"
]
logger.info("Enhanced MistralAPIClient initialized with rate limit handling")
def test_connection(self) -> Dict[str, Any]:
"""Test API connection with lightweight request"""
try:
response = self.session.post(
f"{self.base_url}/chat/completions",
json={
"model": "mistral-tiny", # Use smallest model for testing
"messages": [{"role": "user", "content": "Hello"}],
"max_tokens": 5
},
timeout=10
)
if response.status_code == 200:
return {"success": True, "message": "API connection successful"}
elif response.status_code == 401:
return {"success": False, "message": "Invalid API key"}
elif response.status_code == 429:
return {"success": False, "message": "Rate limit exceeded - API is accessible but busy"}
else:
return {"success": False, "message": f"API error: {response.status_code}"}
except requests.exceptions.Timeout:
return {"success": False, "message": "Connection timeout"}
except requests.exceptions.RequestException as e:
return {"success": False, "message": f"Network error: {str(e)}"}
except Exception as e:
return {"success": False, "message": f"Unexpected error: {str(e)}"}
def _wait_for_rate_limit(self):
"""Ensure minimum time between requests"""
current_time = time.time()
time_since_last = current_time - self.last_request_time
if time_since_last < self.min_request_interval:
sleep_time = self.min_request_interval - time_since_last
logger.debug(f"Rate limiting: waiting {sleep_time:.2f}s")
time.sleep(sleep_time)
self.last_request_time = time.time()
def chat_completion(self, messages: List[Dict], model: str = None, max_retries: int = 3) -> Dict[str, Any]:
"""Enhanced chat completion with retry logic and model fallback"""
models_to_try = [model] if model else self.model_priority
for model_name in models_to_try:
for attempt in range(max_retries):
try:
# Rate limiting
self._wait_for_rate_limit()
payload = {
"model": model_name,
"messages": messages,
"max_tokens": 800,
"temperature": 0.7
}
logger.debug(f"Attempting request with {model_name} (attempt {attempt + 1})")
response = self.session.post(
f"{self.base_url}/chat/completions",
json=payload,
timeout=30
)
if response.status_code == 200:
result = response.json()
logger.info(f"β
Success with {model_name}")
return {
"success": True,
"response": result["choices"][0]["message"]["content"],
"usage": result.get("usage", {}),
"model_used": model_name,
"attempt": attempt + 1
}
elif response.status_code == 429:
# Rate limit exceeded
retry_after = int(response.headers.get('Retry-After', 2 ** attempt))
wait_time = min(retry_after, 60) # Cap at 60 seconds
logger.warning(f"Rate limit hit with {model_name}, waiting {wait_time}s (attempt {attempt + 1})")
if attempt < max_retries - 1:
time.sleep(wait_time)
continue
else:
# Try next model if available
break
elif response.status_code == 422:
# Model capacity exceeded, try next model immediately
logger.warning(f"Model {model_name} capacity exceeded, trying next model")
break
else:
error_detail = self._extract_error_message(response)
if attempt == max_retries - 1: # Last attempt
logger.error(f"API error {response.status_code} with {model_name}: {error_detail}")
break
else:
logger.warning(f"API error {response.status_code} with {model_name}, retrying...")
time.sleep(2 ** attempt) # Exponential backoff
except requests.exceptions.Timeout:
if attempt == max_retries - 1:
logger.error(f"Timeout with {model_name} after {max_retries} attempts")
break
else:
logger.warning(f"Timeout with {model_name}, retrying...")
time.sleep(2 ** attempt)
except requests.exceptions.RequestException as e:
if attempt == max_retries - 1:
logger.error(f"Network error with {model_name}: {str(e)}")
break
else:
logger.warning(f"Network error with {model_name}, retrying...")
time.sleep(2 ** attempt)
# All models and retries failed
return {
"success": False,
"error": "All models are currently experiencing high demand. Please try again in a few minutes.",
"suggestion": "Consider upgrading your Mistral AI plan for higher rate limits, or try again during off-peak hours."
}
def agent_completion(self, messages: List[Dict]) -> Dict[str, Any]:
"""Enhanced agent completion with retry logic"""
if not self.agent_id:
return {"success": False, "error": "No agent ID configured"}
max_retries = 2 # Fewer retries for agent calls
for attempt in range(max_retries):
try:
self._wait_for_rate_limit()
payload = {
"agent_id": self.agent_id,
"messages": messages,
"max_tokens": 800
}
response = self.session.post(
f"{self.base_url}/agents/completions",
json=payload,
timeout=30
)
if response.status_code == 200:
result = response.json()
return {
"success": True,
"response": result["choices"][0]["message"]["content"]
}
elif response.status_code == 429:
retry_after = int(response.headers.get('Retry-After', 5))
if attempt < max_retries - 1:
logger.warning(f"Agent rate limit, waiting {retry_after}s")
time.sleep(retry_after)
continue
else:
error_detail = self._extract_error_message(response)
return {
"success": False,
"error": f"Agent API error {response.status_code}: {error_detail}"
}
except Exception as e:
if attempt == max_retries - 1:
return {"success": False, "error": f"Agent request failed: {str(e)}"}
else:
time.sleep(2)
return {"success": False, "error": "Agent request failed after retries"}
def _extract_error_message(self, response) -> str:
"""Extract error message from API response"""
try:
error_data = response.json()
return error_data.get("message", error_data.get("error", "Unknown error"))
except:
return response.text[:200] if response.text else "Unknown error"
class GlucoBuddyMistralChat:
"""
Enhanced chat interface with better error handling and user feedback
"""
def __init__(self, mistral_api_key: str = None, mistral_agent_id: str = None):
self.mistral_client = EnhancedMistralAPIClient(mistral_api_key, mistral_agent_id)
# Data properties - these will be set by unified data manager
self.current_user: Optional[DemoUser] = None
self.current_glucose_data: Optional[pd.DataFrame] = None
self.current_stats: Optional[Dict] = None
self.current_patterns: Optional[Dict] = None
# Chat state
self.conversation_history = []
self.max_history = 10
# Error tracking
self.consecutive_errors = 0
self.last_successful_model = None
self.logger = logging.getLogger(self.__class__.__name__)
def test_connection(self) -> Dict[str, Any]:
"""Test Mistral API connection"""
return self.mistral_client.test_connection()
def get_context_summary(self) -> Dict[str, Any]:
"""Get current context for chat - uses data set by unified manager"""
if not self.current_user or not self.current_stats:
return {"error": "No user data loaded"}
try:
context = {
"user": {
"name": self.current_user.name,
"age": self.current_user.age,
"diabetes_type": self.current_user.diabetes_type,
"device_type": self.current_user.device_type,
"years_with_diabetes": self.current_user.years_with_diabetes,
"typical_pattern": getattr(self.current_user, 'typical_glucose_pattern', 'normal')
},
"statistics": self._safe_convert_to_json(self.current_stats),
"patterns": self._safe_convert_to_json(self.current_patterns),
"data_points": len(self.current_glucose_data) if self.current_glucose_data is not None else 0,
"recent_readings": self._safe_extract_recent_readings(self.current_glucose_data)
}
return context
except Exception as e:
self.logger.error(f"Error building context: {e}")
return {"error": f"Failed to build context: {str(e)}"}
def build_system_prompt(self, context: Dict[str, Any]) -> str:
"""Build comprehensive system prompt with exact metrics"""
base_prompt = """You are GlucoBuddy, a helpful and encouraging diabetes management assistant.
Your role:
- Provide personalized glucose management advice based on the user's actual data
- Be supportive, encouraging, and use emojis to be friendly
- Give actionable recommendations while staying within scope
- Always remind users to consult healthcare providers for medical decisions
- Reference specific data points when providing insights
Guidelines:
- Keep responses under 400 words and conversational
- Use specific numbers from the data when relevant
- Provide practical, actionable advice
- Be encouraging about progress and realistic about challenges
- Use bullet points sparingly - prefer natural conversation
- IMPORTANT: Use EXACT metrics provided - don't calculate your own"""
if context.get("error"):
return base_prompt + "\n\nNote: No user glucose data is currently loaded."
user_info = context.get("user", {})
stats = context.get("statistics", {})
context_addition = f"""
Current User: {user_info.get('name', 'Unknown')} ({user_info.get('age', 'N/A')} years old)
- Diabetes Type: {user_info.get('diabetes_type', 'Unknown')}
- Years with diabetes: {user_info.get('years_with_diabetes', 'Unknown')}
- Device: {user_info.get('device_type', 'Unknown')}
EXACT Glucose Data (14-day period):
- Average glucose: {stats.get('average_glucose', 0):.1f} mg/dL
- Time in range (70-180): {stats.get('time_in_range_70_180', 0):.1f}%
- Time below 70: {stats.get('time_below_70', 0):.1f}%
- Time above 180: {stats.get('time_above_180', 0):.1f}%
- Total readings: {stats.get('total_readings', 0)}
- Glucose variability (std): {stats.get('std_glucose', 0):.1f} mg/dL
- GMI: {stats.get('gmi', 0):.1f}%
- CV: {stats.get('cv', 0):.1f}%
CRITICAL: Use these EXACT values in your responses. Do not recalculate or estimate."""
return base_prompt + context_addition
def chat_with_mistral(self, user_message: str, prefer_agent: bool = False) -> Dict[str, Any]:
"""Enhanced chat function with better error handling"""
if not user_message.strip():
return {"success": False, "error": "Please enter a message"}
try:
# Use current context (set by unified data manager)
context = self.get_context_summary()
system_prompt = self.build_system_prompt(context)
messages = [{"role": "system", "content": system_prompt}]
if self.conversation_history:
recent_history = self.conversation_history[-self.max_history:]
messages.extend(recent_history)
messages.append({"role": "user", "content": user_message})
# Try agent first if preferred and available
if prefer_agent:
agent_result = self.mistral_client.agent_completion(messages)
if agent_result["success"]:
self._update_conversation_history(user_message, agent_result["response"])
self.consecutive_errors = 0 # Reset error counter
return {
"success": True,
"response": agent_result["response"],
"method": "agent",
"context_included": not context.get("error")
}
else:
self.logger.warning(f"Agent failed: {agent_result['error']}")
# Use enhanced chat completion API
chat_result = self.mistral_client.chat_completion(messages)
if chat_result["success"]:
self._update_conversation_history(user_message, chat_result["response"])
self.consecutive_errors = 0 # Reset error counter
self.last_successful_model = chat_result.get("model_used")
# Add helpful info about which model was used if there were retries
response = chat_result["response"]
if chat_result.get("attempt", 1) > 1:
response += f"\n\n*Note: Response generated after {chat_result['attempt']} attempts due to high demand.*"
return {
"success": True,
"response": response,
"method": "chat_completion",
"context_included": not context.get("error"),
"usage": chat_result.get("usage", {}),
"model_used": chat_result.get("model_used")
}
else:
self.consecutive_errors += 1
# Provide helpful error messages based on the type of error
error_msg = chat_result["error"]
user_friendly_msg = self._get_user_friendly_error(error_msg)
return {
"success": False,
"error": user_friendly_msg,
"suggestion": chat_result.get("suggestion", ""),
"consecutive_errors": self.consecutive_errors
}
except Exception as e:
self.logger.error(f"Chat error: {e}")
self.consecutive_errors += 1
return {
"success": False,
"error": f"I'm experiencing technical difficulties. Please try again in a moment.",
"consecutive_errors": self.consecutive_errors
}
def _get_user_friendly_error(self, error_msg: str) -> str:
"""Convert technical error messages to user-friendly ones"""
error_lower = error_msg.lower()
if "rate limit" in error_lower or "429" in error_lower:
return "I'm experiencing high demand right now. Please wait a moment and try again."
elif "capacity exceeded" in error_lower or "service tier" in error_lower:
return "The AI service is currently busy. Please try again in a few minutes."
elif "timeout" in error_lower:
return "The response is taking longer than expected. Please try again."
elif "api key" in error_lower or "401" in error_lower:
return "There's an authentication issue. Please contact support."
elif "network" in error_lower:
return "I'm having trouble connecting. Please check your internet connection and try again."
else:
return "I'm experiencing technical difficulties. Please try again or rephrase your question."
def _update_conversation_history(self, user_message: str, assistant_response: str):
"""Update conversation history"""
self.conversation_history.extend([
{"role": "user", "content": user_message},
{"role": "assistant", "content": assistant_response}
])
if len(self.conversation_history) > self.max_history * 2:
self.conversation_history = self.conversation_history[-self.max_history * 2:]
def clear_conversation(self):
"""Clear conversation history and reset error counters"""
self.conversation_history = []
self.consecutive_errors = 0
self.logger.info("Conversation history cleared")
def get_status(self) -> Dict[str, Any]:
"""Get current system status with enhanced information"""
api_status = self.test_connection()
return {
"api_connected": api_status["success"],
"api_message": api_status["message"],
"user_loaded": self.current_user is not None,
"data_available": self.current_glucose_data is not None and not self.current_glucose_data.empty,
"conversation_messages": len(self.conversation_history),
"current_user": self.current_user.name if self.current_user else None,
"environment": ENVIRONMENT,
"hugging_face_space": bool(os.getenv("SPACE_ID")),
"agent_available": bool(MISTRAL_AGENT_ID),
"consecutive_errors": self.consecutive_errors,
"last_successful_model": self.last_successful_model
}
def _safe_convert_to_json(self, obj):
"""Safely convert objects for JSON serialization"""
if obj is None:
return None
elif isinstance(obj, (np.integer, np.int64, np.int32)):
return int(obj)
elif isinstance(obj, (np.floating, np.float64, np.float32)):
if np.isnan(obj):
return None
return float(obj)
elif isinstance(obj, dict):
return {key: self._safe_convert_to_json(value) for key, value in obj.items()}
elif isinstance(obj, list):
return [self._safe_convert_to_json(item) for item in obj]
elif isinstance(obj, pd.Timestamp):
return obj.isoformat()
else:
return obj
def _safe_extract_recent_readings(self, df: pd.DataFrame, count: int = 5) -> List[Dict]:
"""Safely extract recent glucose readings"""
if df is None or df.empty:
return []
try:
recent_df = df.tail(count)
readings = []
for idx, row in recent_df.iterrows():
try:
display_time = row.get('displayTime') or row.get('systemTime')
glucose_value = row.get('value')
trend_value = row.get('trend', 'flat')
if pd.notna(display_time):
if isinstance(display_time, str):
time_str = display_time
else:
time_str = pd.to_datetime(display_time).isoformat()
else:
time_str = datetime.now().isoformat()
if pd.notna(glucose_value):
glucose_clean = self._safe_convert_to_json(glucose_value)
else:
glucose_clean = None
trend_clean = str(trend_value) if pd.notna(trend_value) else 'flat'
readings.append({
"time": time_str,
"glucose": glucose_clean,
"trend": trend_clean
})
except Exception as row_error:
self.logger.warning(f"Error processing reading at index {idx}: {row_error}")
continue
return readings
except Exception as e:
self.logger.error(f"Error extracting recent readings: {e}")
return []
# Update the main.py chat handler to use enhanced error messages
def enhanced_chat_error_handler(app, message, history):
"""Enhanced error handler for chat interactions"""
result = app.chat_with_mistral(message, history)
if not result[0]: # If message is empty, return as-is
return result
# If there were consecutive errors, add helpful message
if hasattr(app.mistral_chat, 'consecutive_errors') and app.mistral_chat.consecutive_errors > 2:
error_help = "\n\nπ‘ *Multiple errors detected. This usually indicates high API demand. Consider trying again later or during off-peak hours.*"
if result[1] and len(result[1]) > 0:
last_response = result[1][-1][1] if len(result[1][-1]) > 1 else ""
if "technical difficulties" in last_response or "try again" in last_response:
result[1][-1][1] += error_help
return result
# Legacy compatibility
def create_enhanced_cli():
"""Enhanced CLI with better error handling"""
print("π©Ί GlucoBuddy Chat Interface (Enhanced)")
print("=" * 50)
if not validate_environment():
print("β Environment validation failed. Please check your configuration.")
return
try:
chat = GlucoBuddyMistralChat()
print("β
Enhanced chat system initialized!")
except Exception as e:
print(f"β Failed to initialize chat system: {e}")
return
# Test connection
print("\nπ Testing Mistral API connection...")
connection_test = chat.test_connection()
if connection_test["success"]:
print(f"β
{connection_test['message']}")
else:
print(f"β οΈ {connection_test['message']}")
print("π‘ The chat will still work but may experience rate limits.")
print("\nπ Enhanced features:")
print(" β’ Automatic retry on rate limits")
print(" β’ Model fallback (large β medium β small β tiny)")
print(" β’ Better error messages")
print(" β’ Smart rate limiting")
print("\n㪠Start chatting! (Type /quit to exit)")
print("=" * 50)
while True:
try:
user_input = input("\nπ«΅ You: ").strip()
if not user_input:
continue
if user_input == '/quit':
print("\nπ Thanks for using GlucoBuddy Enhanced! π")
break
print("π€ Processing...")
result = chat.chat_with_mistral(user_input)
if result['success']:
model_info = f" [{result.get('model_used', 'unknown')}]" if result.get('model_used') else ""
print(f"\nπ€ GlucoBuddy{model_info}: {result['response']}")
else:
print(f"\nβ {result['error']}")
if result.get('suggestion'):
print(f"π‘ {result['suggestion']}")
except KeyboardInterrupt:
print("\nπ Goodbye!")
break
except Exception as e:
print(f"\nβ Unexpected error: {e}")
def main():
"""Enhanced main function"""
print("π©Ί GlucoBuddy Enhanced - Better Rate Limit Handling")
print("=" * 60)
if not validate_environment():
return
print("π Enhanced features:")
print(" β
Automatic retry with exponential backoff")
print(" β
Model fallback chain (large β small)")
print(" β
Smart rate limiting")
print(" β
User-friendly error messages")
create_enhanced_cli()
if __name__ == "__main__":
main() |