Spaces:
Running
Running
File size: 7,533 Bytes
10b0de3 b224be5 10b0de3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 |
import modal
import uuid
MODEL_NAME = "nvidia/parakeet-tdt-0.6b-v2"
def download_model():
try:
import nemo.collections.asr as nemo_asr # type: ignore
nemo_asr.models.ASRModel.from_pretrained(MODEL_NAME)
except ImportError:
pass
asr_image = (
modal.Image.debian_slim(python_version="3.12")
.apt_install("git", "ffmpeg")
.pip_install(
"torch",
"librosa",
"omegaconf",
"lightning",
"cuda-python>=12.3",
"git+https://github.com/NVIDIA/multi-storage-client.git",
"nemo_toolkit[asr] @ git+https://github.com/NVIDIA/NeMo@main",
extra_options="-U",
gpu="A10G",
)
.run_function(
download_model,
gpu="A10G",
)
)
with asr_image.imports():
import nemo.collections.asr as nemo_asr # type: ignore
from nemo.collections.asr.parts.submodules.rnnt_decoding import RNNTDecodingConfig # type: ignore
from nemo.collections.asr.parts.utils.streaming_utils import BatchedFrameASRTDT # type: ignore
from nemo.collections.asr.parts.utils.transcribe_utils import get_buffered_pred_feat_rnnt # type: ignore
import math
import torch # type: ignore
from omegaconf import OmegaConf # type: ignore
import librosa # type: ignore
import os
app = modal.App(name="clipscript-asr-service")
# This must be the same volume object used in processing.py
upload_volume = modal.Volume.from_name(
"clipscript-uploads", create_if_missing=True
)
@app.cls(
image=asr_image,
gpu="A10G",
scaledown_window=600,
volumes={"/data": upload_volume}, # Mount the shared volume
)
class ASR:
@modal.enter()
def startup(self):
print("loading model...")
self.model = nemo_asr.models.ASRModel.from_pretrained(MODEL_NAME)
print("model loaded.")
self.model.freeze()
torch.set_grad_enabled(False)
# Configure for buffered inference
model_cfg = self.model._cfg
OmegaConf.set_struct(model_cfg.preprocessor, False)
model_cfg.preprocessor.dither = 0.0
model_cfg.preprocessor.pad_to = 0
OmegaConf.set_struct(model_cfg.preprocessor, True)
# Setup decoding for TDT model
decoding_cfg = RNNTDecodingConfig()
decoding_cfg.strategy = "greedy" # TDT requires greedy
decoding_cfg.preserve_alignments = True
decoding_cfg.fused_batch_size = -1
if hasattr(self.model, 'change_decoding_strategy'):
self.model.change_decoding_strategy(decoding_cfg)
# Calculate timing parameters
self.feature_stride = model_cfg.preprocessor['window_stride']
self.model_stride = 4 # TDT model stride
self.model_stride_in_secs = self.feature_stride * self.model_stride
# Buffered inference parameters
self.chunk_len_in_secs = 15.0
self.total_buffer_in_secs = 20.0
self.batch_size = 64
self.max_steps_per_timestep = 15
# Calculate chunk parameters
self.tokens_per_chunk = math.ceil(self.chunk_len_in_secs / self.model_stride_in_secs)
print("ASR setup complete with buffered inference support.")
def _get_audio_duration(self, audio_path: str) -> float:
try:
duration = librosa.get_duration(path=audio_path)
return duration
except Exception:
# Fallback: estimate from file size (rough approximation)
file_size = os.path.getsize(audio_path)
# Rough estimate: 16kHz, 16-bit mono = ~32KB per second
return file_size / 32000
def _simple_transcribe(self, audio_path: str) -> str:
print("Using simple transcription...")
output = self.model.transcribe([audio_path])
if not output or not hasattr(output[0], "text"):
return ""
return output[0].text
def _buffered_transcribe(self, audio_path: str) -> str:
print("Using buffered transcription...")
# Setup TDT frame processor
frame_asr = BatchedFrameASRTDT(
asr_model=self.model,
frame_len=self.chunk_len_in_secs,
total_buffer=self.total_buffer_in_secs,
batch_size=self.batch_size,
max_steps_per_timestep=self.max_steps_per_timestep,
stateful_decoding=False,
)
# Calculate delay for TDT
mid_delay = math.ceil((self.chunk_len_in_secs + (self.total_buffer_in_secs - self.chunk_len_in_secs) / 2) / self.model_stride_in_secs)
# Process with buffered inference
hyps = get_buffered_pred_feat_rnnt(
asr=frame_asr,
tokens_per_chunk=self.tokens_per_chunk,
delay=mid_delay,
model_stride_in_secs=self.model_stride_in_secs,
batch_size=self.batch_size,
manifest=None,
filepaths=[audio_path],
accelerator='gpu',
)
# Extract transcription
if hyps and len(hyps) > 0:
return hyps[0].text
return ""
@modal.method()
def transcribe(self, audio_filename: str = None, audio_bytes: bytes = None, use_buffered: bool | None = None) -> dict[str, str]:
audio_path = None
temp_audio_path = None
try:
if audio_filename:
audio_path = f"/data/{audio_filename}"
elif audio_bytes:
# When bytes are passed, they must be written to a file for librosa/nemo to read.
temp_audio_path = f"/tmp/input_{uuid.uuid4()}.wav"
with open(temp_audio_path, "wb") as f:
f.write(audio_bytes)
audio_path = temp_audio_path
else:
raise ValueError("Either 'audio_filename' or 'audio_bytes' must be provided.")
if not os.path.exists(audio_path):
return {"text": "", "error": f"Audio file not found at path: {audio_path}"}
# Determine transcription method
if use_buffered is None:
duration = self._get_audio_duration(audio_path)
use_buffered = duration > 1200.0 # 20 minutes
print(f"Audio duration: {duration:.1f}s, using {'buffered' if use_buffered else 'simple'} transcription")
if use_buffered:
text = self._buffered_transcribe(audio_path)
else:
text = self._simple_transcribe(audio_path)
print("transcription complete.")
return {"text": text, "error": ""}
except Exception as e:
print(f"Transcription error: {e}")
return {"text": "", "error": str(e)}
finally:
if temp_audio_path and os.path.exists(temp_audio_path):
os.remove(temp_audio_path)
@modal.method()
def transcribe_simple(self, audio_filename: str = None, audio_bytes: bytes = None) -> dict[str, str]:
"""Force simple transcription (for compatibility)"""
return self.transcribe(audio_filename=audio_filename, audio_bytes=audio_bytes, use_buffered=False)
@modal.method()
def transcribe_buffered(self, audio_filename: str = None, audio_bytes: bytes = None) -> dict[str, str]:
"""Force buffered transcription"""
return self.transcribe(audio_filename=audio_filename, audio_bytes=audio_bytes, use_buffered=True) |