File size: 7,533 Bytes
10b0de3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b224be5
10b0de3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import modal
import uuid

MODEL_NAME = "nvidia/parakeet-tdt-0.6b-v2"

def download_model():
    try: 
        import nemo.collections.asr as nemo_asr # type: ignore
        nemo_asr.models.ASRModel.from_pretrained(MODEL_NAME)
    except ImportError:
        pass

asr_image = (
    modal.Image.debian_slim(python_version="3.12")
    .apt_install("git", "ffmpeg")
    .pip_install(
        "torch",
        "librosa",
        "omegaconf",
        "lightning",
        "cuda-python>=12.3",
        "git+https://github.com/NVIDIA/multi-storage-client.git",
        "nemo_toolkit[asr] @ git+https://github.com/NVIDIA/NeMo@main",
        extra_options="-U",
        gpu="A10G",
    )
    .run_function(
        download_model,
        gpu="A10G",
    )
)

with asr_image.imports():
    import nemo.collections.asr as nemo_asr # type: ignore
    from nemo.collections.asr.parts.submodules.rnnt_decoding import RNNTDecodingConfig # type: ignore
    from nemo.collections.asr.parts.utils.streaming_utils import BatchedFrameASRTDT # type: ignore
    from nemo.collections.asr.parts.utils.transcribe_utils import get_buffered_pred_feat_rnnt # type: ignore
    import math
    import torch # type: ignore
    from omegaconf import OmegaConf # type: ignore
    import librosa # type: ignore
    import os

app = modal.App(name="clipscript-asr-service")

# This must be the same volume object used in processing.py
upload_volume = modal.Volume.from_name(
    "clipscript-uploads", create_if_missing=True
)

@app.cls(
    image=asr_image,
    gpu="A10G",
    scaledown_window=600,
    volumes={"/data": upload_volume},  # Mount the shared volume
)
class ASR:
    @modal.enter()
    def startup(self):
        print("loading model...")
        self.model = nemo_asr.models.ASRModel.from_pretrained(MODEL_NAME)
        print("model loaded.")
        
        self.model.freeze()
        torch.set_grad_enabled(False)
        
        # Configure for buffered inference
        model_cfg = self.model._cfg
        OmegaConf.set_struct(model_cfg.preprocessor, False)
        model_cfg.preprocessor.dither = 0.0
        model_cfg.preprocessor.pad_to = 0
        OmegaConf.set_struct(model_cfg.preprocessor, True)
        
        # Setup decoding for TDT model
        decoding_cfg = RNNTDecodingConfig()
        decoding_cfg.strategy = "greedy"  # TDT requires greedy
        decoding_cfg.preserve_alignments = True
        decoding_cfg.fused_batch_size = -1
        
        if hasattr(self.model, 'change_decoding_strategy'):
            self.model.change_decoding_strategy(decoding_cfg)
        
        # Calculate timing parameters
        self.feature_stride = model_cfg.preprocessor['window_stride']
        self.model_stride = 4  # TDT model stride
        self.model_stride_in_secs = self.feature_stride * self.model_stride
        
        # Buffered inference parameters
        self.chunk_len_in_secs = 15.0
        self.total_buffer_in_secs = 20.0
        self.batch_size = 64 
        self.max_steps_per_timestep = 15
        
        # Calculate chunk parameters
        self.tokens_per_chunk = math.ceil(self.chunk_len_in_secs / self.model_stride_in_secs)
        
        print("ASR setup complete with buffered inference support.")

    def _get_audio_duration(self, audio_path: str) -> float:
        try:
            duration = librosa.get_duration(path=audio_path)
            return duration
        except Exception:
            # Fallback: estimate from file size (rough approximation)
            file_size = os.path.getsize(audio_path)
            # Rough estimate: 16kHz, 16-bit mono = ~32KB per second
            return file_size / 32000
    
    def _simple_transcribe(self, audio_path: str) -> str:
        print("Using simple transcription...")
        output = self.model.transcribe([audio_path])
        
        if not output or not hasattr(output[0], "text"):
            return ""
        
        return output[0].text
    
    def _buffered_transcribe(self, audio_path: str) -> str:
        print("Using buffered transcription...")
        
        # Setup TDT frame processor
        frame_asr = BatchedFrameASRTDT(
            asr_model=self.model,
            frame_len=self.chunk_len_in_secs,
            total_buffer=self.total_buffer_in_secs,
            batch_size=self.batch_size,
            max_steps_per_timestep=self.max_steps_per_timestep,
            stateful_decoding=False,
        )
        
        # Calculate delay for TDT
        mid_delay = math.ceil((self.chunk_len_in_secs + (self.total_buffer_in_secs - self.chunk_len_in_secs) / 2) / self.model_stride_in_secs)
        
        # Process with buffered inference
        hyps = get_buffered_pred_feat_rnnt(
            asr=frame_asr,
            tokens_per_chunk=self.tokens_per_chunk,
            delay=mid_delay,
            model_stride_in_secs=self.model_stride_in_secs,
            batch_size=self.batch_size,
            manifest=None,
            filepaths=[audio_path],
            accelerator='gpu',
        )
        
        # Extract transcription
        if hyps and len(hyps) > 0:
            return hyps[0].text
        
        return ""

    @modal.method()
    def transcribe(self, audio_filename: str = None, audio_bytes: bytes = None, use_buffered: bool | None = None) -> dict[str, str]:
        audio_path = None
        temp_audio_path = None
        try:
            if audio_filename:
                audio_path = f"/data/{audio_filename}"
            elif audio_bytes:
                # When bytes are passed, they must be written to a file for librosa/nemo to read.
                temp_audio_path = f"/tmp/input_{uuid.uuid4()}.wav"
                with open(temp_audio_path, "wb") as f:
                    f.write(audio_bytes)
                audio_path = temp_audio_path
            else:
                raise ValueError("Either 'audio_filename' or 'audio_bytes' must be provided.")
            
            if not os.path.exists(audio_path):
                return {"text": "", "error": f"Audio file not found at path: {audio_path}"}
            
            # Determine transcription method
            if use_buffered is None:
                duration = self._get_audio_duration(audio_path)
                use_buffered = duration > 1200.0  # 20 minutes
                print(f"Audio duration: {duration:.1f}s, using {'buffered' if use_buffered else 'simple'} transcription")
            
            if use_buffered:
                text = self._buffered_transcribe(audio_path)
            else:
                text = self._simple_transcribe(audio_path)
            
            print("transcription complete.")
            return {"text": text, "error": ""}
            
        except Exception as e:
            print(f"Transcription error: {e}")
            return {"text": "", "error": str(e)}
        finally:
            if temp_audio_path and os.path.exists(temp_audio_path):
                os.remove(temp_audio_path)

    @modal.method()
    def transcribe_simple(self, audio_filename: str = None, audio_bytes: bytes = None) -> dict[str, str]:
        """Force simple transcription (for compatibility)"""
        return self.transcribe(audio_filename=audio_filename, audio_bytes=audio_bytes, use_buffered=False)
    
    @modal.method()
    def transcribe_buffered(self, audio_filename: str = None, audio_bytes: bytes = None) -> dict[str, str]:
        """Force buffered transcription"""
        return self.transcribe(audio_filename=audio_filename, audio_bytes=audio_bytes, use_buffered=True)