File size: 28,942 Bytes
4af1b1b 4cf9235 3cebaf0 4cf9235 4af1b1b 4cc5961 4af1b1b 4cc5961 4af1b1b 4cf9235 4af1b1b ec937b1 4cf9235 4af1b1b 4cf9235 4af1b1b ec937b1 3cebaf0 4af1b1b ec8bf9a 4af1b1b 4cf9235 4af1b1b ec8bf9a 4af1b1b 4cf9235 4af1b1b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 |
import gradio as gr
import requests, asyncio
import os, sys, subprocess, json, time, re, gc, shutil, random, urllib3
from gradio import ChatMessage
from dataclasses import dataclass, asdict
from markdownify import markdownify as markdownify
from huggingface_hub import login, InferenceClient, AsyncInferenceClient, HfApi, hf_hub_download
import gradio_client as g_client
from langchain.memory import ConversationBufferMemory
import bs4
import soundfile as sf
from transformers import pipeline
from transformers.agents import ToolCollection, Toolbox, ReactCodeAgent, CodeAgent, ReactAgent, ReactJsonAgent, stream_to_gradio, HfApiEngine, DuckDuckGoSearchTool, ManagedAgent, PythonInterpreterTool, load_tool, TransformersEngine, agent_types, FinalAnswerTool
from smolagents import UserInputTool
import mimetypes
import sentence_transformers
from typing import Optional
from smolagents.agent_types import AgentAudio, AgentImage, AgentText, handle_agent_output_types
from smolagents.agents import ActionStep, MultiStepAgent
from smolagents.memory import MemoryStep
from transformers.agents import Tool as Atool
from transformers.agents.default_tools import Tool as Ragtool
from smolagents import tool as Smoltool
from smolagents import CodeAgent as SmolcodeAgent
from smolagents import MultiStepAgent as SmolmultistepAgent
from smolagents import ToolCallingAgent as SmoltoolcallingAgent
from smolagents import WebSearchTool, LiteLLMModel
from smolagents import InferenceClientModel as SmolInfCliModel
from smolagents import Tool as Stool
from smolagents import TransformersModel, ApiModel, VLLMModel, MLXModel, LiteLLMModel, LiteLLMRouterModel, OpenAIServerModel, AzureOpenAIServerModel, AmazonBedrockServerModel
import datasets
import spaces
import tqdm
from gtts import gTTS
from duckduckgo_search import DDGS
from langchain_huggingface.embeddings import HuggingFaceEmbeddings
##from llama_cpp import Llama
from langchain_community.vectorstores import FAISS
from smolagents import default_tools
from langchain.docstore.document import Document
from typing import Generator
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_core.vectorstores import VectorStore
HF_TOKEN=os.environ.get('HF_TOKEN')
login(token=HF_TOKEN)
loots=[]
soots=[]
messages=[]
custom_css="""
#papa {
width: 50%;
}
#popa {
width: 50%;
}
.gradio-container {
animation: growShrink 3s 1 forwards;
}
@keyframes growShrink {
from {
transform: scale(0.1);
}
to {
transform: scale(1.0);
}
}
"""
head_js="""
<script>
document.getElementById('papa').setAttribute('style', 'width: 50%;');
document.getElementById('popa').setAttribute('style', 'width: 50%;');
</script>
"""
engines=["InferenceClientModel","ApiModel","LiteLLMModel","AzureOpenAIServerModel","AmazonBedrockServerModel","MLXModel","LiteLLMRouterModel","OpenAIServerModel","TransformersEngine","VLLMModel","TransformersModel","HfApiModel"]
all_tasks=[]
moss=[]
mass=[]
def search_ducky(query):
with DDGS() as ddgs:
results = list(ddgs.text(query, max_results=10))
content = ''
if results:
for result in results:
content += result['body']
return content
knowledge_base = datasets.load_dataset("m-ric/huggingface_doc", split="train")
source_docs = [Document(page_content=doc["text"], metadata={"source": doc["source"].split("/")[1]}) for doc in knowledge_base]
docs_processed = RecursiveCharacterTextSplitter(chunk_size=500).split_documents(source_docs)[:1000]
embedding_model = HuggingFaceEmbeddings(model_name="thenlper/gte-small")
vectordb = FAISS.from_documents(documents=docs_processed, embedding=embedding_model)
all_sources = list(set([doc.metadata["source"] for doc in docs_processed]))
print(all_sources)
class RetrieverTool(Ragtool):
name = "retriever"
description = "Retrieves some documents from the knowledge base that have the closest embeddings to the input query."
inputs = {
"query": {
"type": "string",
"description": "The query to perform. This should be semantically close to your target documents. Use the affirmative form rather than a question.",
},
"source": {
"type": "string",
"description": ""
},
}
output_type = "string"
def __init__(self, vectordb: VectorStore, all_sources: str, **kwargs):
super().__init__(**kwargs)
self.vectordb = vectordb
self.inputs["source"]["description"] = (f"The source of the documents to search, as a str representation of a list. Possible values in the list are: {all_sources}. If this argument is not provided, all sources will be searched.")
def forward(self, query: str, source: str = None) -> str:
assert isinstance(query, str), "Your search query must be a string"
if source:
if isinstance(source, str) and "[" not in str(source): # if the source is not representing a list
source = [source]
source = json.loads(str(source).replace("'", '"'))
docs = self.vectordb.similarity_search(query, filter=({"source": source} if source else None), k=3)
if len(docs) == 0:
return "No documents found with this filtering. Try removing the source filter."
return "Retrieved documents:\n\n" + "\n===Document===\n".join([doc.page_content for doc in docs])
retriever_tool = RetrieverTool(vectordb=vectordb, all_sources=all_sources)
memory = ConversationBufferMemory(memory_key="chat_history")
def get_hf_tasks(all_tasks):
url = "https://huggingface.co/api/tasks"
response = requests.get(url)
tasks = response.json()
task_list = []
for task_type in tasks:
task_list.append(task_type)
all_tasks.extend(task_list)
return all_tasks
get_hf_tasks(all_tasks)
def fetch_gradio_spaces():
response = requests.get("https://huggingface.co/api/spaces?runtime=zero-a10g&sdk=gradio&sort=trendingScore&limit=10000")
data = response.json()
gradio_spaces = [space['id'] for space in data if space.get('sdk') == "gradio" and space['runtime']['hardware']['current'] != "cpu-basic" and space['runtime']['hardware']['current'] != None]
return gradio_spaces
gradio_list=fetch_gradio_spaces()
@Smoltool
def visit_webpage(url: str) -> str:
"""Visits a webpage at the given URL and returns its content as a markdown string.
Args:
url: The URL of the webpage to visit.
Returns:
The content of the webpage converted to Markdown, or an error message if the request fails.
"""
try:
response = requests.get(url)
response.raise_for_status()
markdown_content = markdownify(response.text).strip()
markdown_content = re.sub(r"\n{3,}", "\n\n", markdown_content)
return markdown_content
except RequestException as e:
return f"Error fetching the webpage: {str(e)}"
except Exception as e:
return f"An unexpected error occurred: {str(e)}"
def add_task_tools():
for tsk in all_tasks:
tsk_tool=load_tool(tsk)
loots.append(tsk_tool)
def add_space_tools():
for sptool in gradio_list[:55]:
try:
nmo=str(re.sub(r"[-./]", "_", sptool))
deco=str(re.sub(r"[-./]", " ", sptool))
nw_tool = Stool.from_space(space_id=sptool, name=nmo, description=deco)
soots.append(nw_tool)
aw_tool=Atool.from_space(space_id=sptool, name=nmo, description=deco)
loots.append(aw_tool)
except IndexError:
print(f"Skipping {sptool}: No API endpoint found.")
except Exception as e:
print(f"Error loading {sptool}: {e}")
add_space_tools()
print(loots)
##model="Qwen/Qwen2.5-Coder-32B-Instruct"
##llm_engine = HfApiEngine(model=model, token=HF_TOKEN, max_tokens=300, timeout=120)
##smodol = SmolInfCliModel(model_id=model)
#####llm = Llama(model_path=hf_hub_download(repo_id="bartowski/DeepSeek-R1-Distill-Qwen-1.5B-GGUF", filename="DeepSeek-R1-Distill-Qwen-1.5B-Q4_0.gguf", local_dir='~/app/Downloads'), n_ctx=512, seed=42,)
##def llama_cpp_engine(prompt=None,messages=None,max_tokens=256,temperature=0.7,stop=None,stream=False,functions=None):
##### if messages:
##### kwargs = {"messages": messages,"max_tokens": max_tokens,"temperature": temperature,"stop": stop,"stream": stream,}
##### if functions:
##### kwargs["functions"] = functions
##### completion = llm.create_chat_completion(**kwargs)
##### else:
##### kwargs = {"prompt": prompt,"max_tokens": max_tokens,"temperature": temperature,"stop": stop,"stream": stream,}
##### completion = llm.create_completion(**kwargs)
#####
##### if stream:
#####
##### for chunk in completion:
##### if "choices" in chunk and chunk["choices"]:
##### yield chunk["choices"][0]["text"]
##### else:
#####
##### if "choices" in completion and completion["choices"]:
##### return completion["choices"][0]["text"]
##### return ""
async def bouge(ma_tkens):
client = AsyncInferenceClient(provider="nebius",api_key=HF_TOKEN,)
## base_url="https://api.studio.nebius.com/v1",
stream = await client.chat.completions.create(model="Qwen/Qwen2.5-Coder-32B-Instruct",messages=messages,max_tokens=ma_tkens,stream=True,)
async for chunk in stream:
yield chunk.choices.delta.content
def engine_llm(eng_name,moodl,provdr,mx_tkens):
if eng_name=="InferenceClientModel":
eng_smml=SmolInfCliModel(model_id=moodl,provider=provdr,max_tokens=mx_tkens,token=HF_TOKEN)
elif eng_name=="ApiModel":
eng_smml=ApiModel(model_id=moodl,client=asyncio.run(bouge(mx_tkens)))
elif eng_name=="LiteLLMModel":
eng_smml=LiteLLMModel()
elif eng_name=="AzureOpenAIServerModel":
eng_smml=AzureOpenAIServerModel()
elif eng_name=="AmazonBedrockServerModel":
eng_smml=AmazonBedrockServerModel()
elif eng_name=="MLXModel":
eng_smml=MLXModel()
elif eng_name=="LiteLLMRouterModel":
eng_smml=LiteLLMRouterModel()
elif eng_name=="OpenAIServerModel":
eng_smml=OpenAIServerModel()
elif eng_name=="VLLMModel":
eng_smml=VLLMModel()
elif eng_name=="TransformersEngine":
eng_smml=TransformersEngine(pipeline=pipeline("text-generation",torch_dtype=torch.bfloat16,device="cpu"))
elif eng_name=="TransformersModel":
eng_smml=TransformersModel(model_id="Qwen/Qwen2.5-Coder-1.5B-Instruct",device="cpu",max_new_tokens=mx_tkens,)
##### elif eng_name=="LlamaCppModel":
##### eng_smml=llama_cpp_engine(prompt=None,messages=messages,max_tokens=mx_tkens,temperature=0.7,stop=None,stream=True,functions=None)
elif eng_name=="HfApiEngine":
eng_smml=HfApiEngine(model=model, token=HF_TOKEN, max_tokens=mx_tkens, timeout=120)
else:
return None
return eng_smml
selected_tasks = all_tasks[:8]
agent_swarm_array = []
def create_agent_swarm(ngine, nugt, skats):
cos = int(int(len(loots)) / int(len(skats)))
for ido, tsk_type in enumerate(skats):
sart = ido * cos
ond = sart + cos
matched_tools=[]
decs=""
words = re.findall(r'\w+', tsk_type.lower())
patterns = [re.compile(r'\b' + re.escape(word) + r'\b', re.IGNORECASE) for word in words]
for kool in loots:
text = f"{kool.name} {kool.description}".lower()
decs+=text
if all(pattern.search(text) for pattern in patterns):
matched_tools.append(kool)
matched_tools = list(set(matched_tools))
agent_two = CodeAgent(tools=[retriever_tool, *matched_tools], llm_engine=ngine, additional_authorized_imports=['requests', 'bs4', 'json', 'time', 're', 'g_client', 'urllib3', 'gTTS',], add_base_tools=True, max_iterations=4,)
managed_agent_two = ManagedAgent(agent=agent_two, name=f"{tsk_type.replace('-', '_').replace(' ', '_')}_{str(int(time.time()))}", description=f"Tool agent for {tsk_type.replace('-', '_').replace(' ', '_')} {decs}".strip(),)
agent_swarm_array.append(managed_agent_two)
return ReactCodeAgent(tools=[], llm_engine=ngine, managed_agents=agent_swarm_array, add_base_tools=True, max_iterations=10,)
smol_swarm_array = []
def create_smol_swarm(ngena, nusm, sksat):
cou = int(int(len(soots)) / int(len(sksat)))
for idx, task_type in enumerate(sksat):
start = idx * cou
end = start + cou
motched_tools=[]
dacs=""
werds = re.findall(r'\w+', task_type.lower())
petterns = [re.compile(r'\b' + re.escape(werd) + r'\b', re.IGNORECASE) for werd in werds]
for qool in soots:
taxt = f"{qool.name} {qool.description}".lower()
dacs+=taxt
if all(pettern.search(taxt) for pettern in petterns):
motched_tools.append(qool)
motched_tools = list(set(motched_tools))
smol_tool_agent = SmoltoolcallingAgent(tools=motched_tools, model=ngena, add_base_tools=True, max_steps=4, provide_run_summary=True, verbosity_level=2, name=f"{task_type.replace('-', '_').replace(' ', '_')}_{str(int(time.time()))}", description=f"Tool agent for {task_type.replace('-', '_').replace(' ', '_')} {dacs}".strip(),)
smol_swarm_array.append(smol_tool_agent)
return SmolcodeAgent(tools=[], model=ngena, max_steps=10, additional_authorized_imports=['requests', 'bs4', 'json', 'time', 're', 'g_client', 'urllib3', 'gTTS',], planning_interval=2, verbosity_level=2, add_base_tools=True, name="smol_swarm_manager", description="Main smol manager of smol team managers", managed_agents=smol_swarm_array, use_structured_outputs_internally=False, provide_run_summary=True, stream_outputs=True)
def inc_smomancnt(totsmos):
if totsmos < 1:
totsmos=1
elif totsmos >= 5:
totsmos = 5
else:
totsmos+=1
return totsmos
def dec_smomancnt(totsmos):
if totsmos <= 1:
totsmos = 1
else:
totsmos-=1
return totsmos
def inc_genmancnt(totgents):
if totgents < 1:
totgents=1
elif totgents >= 5:
totgents = 5
else:
totgents+=1
return totgents
def dec_genmancnt(totgents):
if totgents <= 1:
totgents = 1
else:
totgents-=1
return totgents
smba_list=[]
def get_smba_mdls(smba_list):
telphn = requests.get("https://huggingface.co/api/models?inference_provider=sambanova")
dta = telphn.json()
smb_pro = [smba['id'] for smba in dta]
smba_list.extend(smb_pro)
return smba_list
get_smba_mdls(smba_list)
nbus_list=[]
def get_nbius_mdls(nbus_list):
phntel = requests.get("https://huggingface.co/api/models?inference_provider=nebius")
dtn = phntel.json()
nbs_pro = [nbus['id'] for nbus in dtn]
nbus_list.extend(nbs_pro)
return nbus_list
get_nbius_mdls(nbus_list)
def check_all(gchkbgone):
gchkbgone=gr.CheckboxGroup(value=[*all_tasks], label="Task List")
return gchkbgone
def uncheck_all(gchkbgone):
gchkbgone=gr.CheckboxGroup(value=[], label="Task List")
return gchkbgone
def check_lal(gchkbgtwo):
gchkbgtwo=gr.CheckboxGroup(value=[*all_tasks], label="Task List")
return gchkbgtwo
def uncheck_lal(gchkbgtwo):
gchkbgtwo=gr.CheckboxGroup(value=[], label="Task List")
return gchkbgtwo
def psh(qip_dons):
qip_dons=gr.Dropdown(choices=[*smba_list],label="Sambanova Models",value="deepseek-ai/DeepSeek-R1-Distill-Llama-70B",scale=0)
return qip_dons
def qsh(piq_dons):
piq_dons=gr.Dropdown(choices=[*nbus_list],label="Nebius Models",value="Qwen/Qwen2.5-Coder-32B-Instruct",scale=0)
return piq_dons
def pss(qtp_dons):
qtp_dons=gr.Dropdown(choices=[*smba_list],label="Sambanova Models",value="deepseek-ai/DeepSeek-R1-Distill-Llama-70B",scale=0)
return qtp_dons
def qss(ptq_dons):
ptq_dons=gr.Dropdown(choices=[*nbus_list],label="Nebius Models",value="Qwen/Qwen2.5-Coder-32B-Instruct",scale=0)
return ptq_dons
def pull_message(step_log: dict):
if step_log.get("rationale"):
yield ChatMessage(role="assistant", content=step_log["rationale"])
if step_log.get("tool_call"):
used_code = step_log["tool_call"]["tool_name"]
content = step_log["tool_call"]["tool_arguments"]
if used_code:
content = f"```py\n{content}\n```"
yield ChatMessage(role="assistant",metadata={"title": f"π οΈ Used tool {step_log['tool_call']['tool_name']}"},content=content,)
if step_log.get("observation"):
yield ChatMessage(role="assistant", content=f"```\n{step_log['observation']}\n```")
if step_log.get("error"):
yield ChatMessage(role="assistant",content=str(step_log["error"]),metadata={"title": "π₯ Error"},)
def stream_from_transformers_agent(genta, primpt) -> Generator[ChatMessage, None, ChatMessage | None]:
"""Runs an agent with the given prompt and streams the messages from the agent as ChatMessages."""
class Output:
output: agent_types.AgentType | str = None
step_log = None
for step_log in genta.run(primpt, stream=True):
if isinstance(step_log, dict):
for message in pull_message(step_log):
print("message", message)
yield message
Output.output = step_log
if isinstance(Output.output, agent_types.AgentText):
yield ChatMessage(role="assistant", content=f"```\n{Output.output.to_string()}\n```")
elif isinstance(Output.output, agent_types.AgentImage):
yield ChatMessage(role="assistant",content={"path": Output.output.to_string(), "mime_type": "image/png"},)
elif isinstance(Output.output, agent_types.AgentAudio):
yield ChatMessage(role="assistant",content={"path": Output.output.to_string(), "mime_type": "audio/wav"},)
else:
yield ChatMessage(role="assistant", content=f"{Output.output}")
def pull_messages_from_step(step_log: MemoryStep,):
if isinstance(step_log, ActionStep):
step_number = f"Step {step_log.step_number}" if step_log.step_number is not None else ""
yield gr.ChatMessage(role="assistant", content=f"**{step_number}**")
if hasattr(step_log, "model_output") and step_log.model_output is not None:
model_output = step_log.model_output.strip()
model_output = re.sub(r"```\s*<end_code>", "```", model_output) # handles ```<end_code>
model_output = re.sub(r"<end_code>\s*```", "```", model_output) # handles <end_code>```
model_output = re.sub(r"```\s*\n\s*<end_code>", "```", model_output) # handles ```\n<end_code>
model_output = model_output.strip()
yield gr.ChatMessage(role="assistant", content=model_output)
if hasattr(step_log, "tool_calls") and step_log.tool_calls is not None:
first_tool_call = step_log.tool_calls[0]
used_code = first_tool_call.name == "python_interpreter"
parent_id = f"call_{len(step_log.tool_calls)}"
args = first_tool_call.arguments
if isinstance(args, dict):
content = str(args.get("answer", str(args)))
else:
content = str(args).strip()
if used_code:
content = re.sub(r"```.*?\n", "", content)
content = re.sub(r"\s*<end_code>\s*", "", content)
content = content.strip()
if not content.startswith("```python"):
content = f"```python\n{content}\n```"
parent_message_tool = gr.ChatMessage(
role="assistant",
content=content,
metadata={"title": f"π οΈ Used tool {first_tool_call.name}","id": parent_id,"status": "pending",},)
yield parent_message_tool
if hasattr(step_log, "observations") and (step_log.observations is not None and step_log.observations.strip()):
log_content = step_log.observations.strip()
if log_content:
log_content = re.sub(r"^Execution logs:\s*", "", log_content)
yield gr.ChatMessage(role="assistant",content=f"{log_content}",metadata={"title": "π Execution Logs", "parent_id": parent_id, "status": "done"},)
if hasattr(step_log, "error") and step_log.error is not None:
yield gr.ChatMessage(role="assistant",content=str(step_log.error),metadata={"title": "π₯ Error", "parent_id": parent_id, "status": "done"},)
parent_message_tool.metadata["status"] = "done"
elif hasattr(step_log, "error") and step_log.error is not None:
yield gr.ChatMessage(role="assistant", content=str(step_log.error), metadata={"title": "π₯ Error"})
step_footnote = f"{step_number}"
if hasattr(step_log, "input_token_count") and hasattr(step_log, "output_token_count"):
token_str = (f" | Input-tokens:{step_log.input_token_count:,} | Output-tokens:{step_log.output_token_count:,}")
step_footnote += token_str
if hasattr(step_log, "duration"):
step_duration = f" | Duration: {round(float(step_log.duration), 2)}" if step_log.duration else None
step_footnote += step_duration
step_footnote = f"""<span style="color: #bbbbc2; font-size: 12px;">{step_footnote}</span> """
yield gr.ChatMessage(role="assistant", content=f"{step_footnote}")
yield gr.ChatMessage(role="assistant", content="-----")
def stream_to_gradio(agent,task: str, reset_agent_memory: bool = False,additional_args: Optional[dict] = None,):
total_input_tokens = 0
total_output_tokens = 0
for step_log in agent.run(task, stream=True, reset=reset_agent_memory, additional_args=additional_args):
if hasattr(agent.model, "last_input_token_count"):
total_input_tokens += int(agent.model.last_input_token_count==0) | 0
total_output_tokens += int(agent.model.last_output_token_count==0) | 0
if isinstance(step_log, ActionStep):
step_log.input_token_count = int(agent.model.last_input_token_count) | 0
step_log.output_token_count = int(agent.model.last_output_token_count) | 0
for message in pull_messages_from_step(step_log,):
yield message
final_answer = step_log
final_answer = handle_agent_output_types(final_answer)
if isinstance(final_answer, AgentText):
yield gr.ChatMessage(role="assistant",content=f"**Final answer:**\n{final_answer.to_string()}\n",)
elif isinstance(final_answer, AgentImage):
yield gr.ChatMessage(role="assistant",content={"path": final_answer.to_string(), "mime_type": "image/png"},)
elif isinstance(final_answer, AgentAudio):
yield gr.ChatMessage(role="assistant",content={"path": final_answer.to_string(), "mime_type": "audio/wav"},)
else:
yield gr.ChatMessage(role="assistant", content=f"**Final answer:** {str(final_answer)}")
def plex(prjmpt, history, gine, samba, nebu, tsmos, tsssk, tikens, flies):
maodl=random.choice([samba,nebu])
pravdr="nebius"
mator=engine_llm(gine,maodl,pravdr,tikens)
smol_swarm_manager=create_smol_swarm(mator,tsmos,tsssk)
print(str(len(smol_swarm_array)))
print(smol_swarm_array[0].tools)
moss.extend(history)
messages = []
messages.append(gr.ChatMessage(role="user", content=prjmpt))
yield messages
for msg in stream_to_gradio(smol_swarm_manager, prjmpt, reset_agent_memory=False):
messages.append(msg)
yield messages
yield messages
def plax(primpt, histori, gina, sambi, nebi, tents, tksss, takens, fiels):
meodl=random.choice([sambi,nebi])
print(meodl)
prevdr="sambanova"
metor=engine_llm(gina,meodl,prevdr,takens)
agent_swarm_manager=create_agent_swarm(metor,tents,tksss)
print(str(len(agent_swarm_array)))
mass.extend(histori)
messages = []
yield messages
for mtg in stream_from_transformers_agent(agent_swarm_manager, primpt):
messages.append(mtg)
yield messages
yield messages
def clr(unput,sly):
return gr.Textbox(placeholder="Prompt agents here..."), gr.File(label="Image,Video,Text,Image-OCR,Audio-ASR,Etc.",file_types=["file"],file_count="single", interactive=False)
with gr.Blocks(head=head_js,css=custom_css) as iface:
with gr.Sidebar(position="left", width="50%", open=False, elem_id="papa"):
gr.Markdown(":-._.-: SmolAgents Configuration :-._.-:")
gr.Markdown(" β Select Smolagents backend engine. β ")
with gr.Row():
vroom = gr.Radio(choices=[*engines], label="SmolAgents inference engines", value=[*engines][0],)
gr.Markdown(" β Select a model below. β ")
with gr.Row():
with gr.Group():
qip_dons=gr.Dropdown(choices=[],label="Sambanova Models",scale=0)
piq_dons=gr.Dropdown(choices=[],label="Nebius Models",scale=0)
gr.Markdown("For Demo purposes the number of Teams is limited to 1.")
with gr.Row(equal_height=True):
totsmos = gr.Number(label="Number of Teams", value=1, scale=0,)
with gr.Column():
incnumone = gr.Button("(+) Increase", size="sm", scale=0,)
incnumtwo = gr.Button("(-) Decrease", size="sm", scale=0,)
incnumone.click(fn=inc_smomancnt,inputs=totsmos,outputs=totsmos)
incnumtwo.click(fn=dec_smomancnt,inputs=totsmos,outputs=totsmos)
gr.Markdown(" β Select agent tasks below. β (Each task will be attributed to a managed toolcalling agent. Defaults to all.)")
with gr.Row():
with gr.Accordion(label="Task List", open=False,) as accdi:
gchkbgone=gr.CheckboxGroup(choices=[*all_tasks], label="Select Tasks", value=[*all_tasks], scale=1)
with gr.Column():
gr.Button("Check All",size="sm",scale=0).click(fn=check_all,inputs=gchkbgone, outputs=gchkbgone)
gr.Button("Uncheck All",size="sm",scale=0).click(fn=uncheck_all,inputs=gchkbgone, outputs=gchkbgone)
with gr.Sidebar(position="right", width="50%", open=False, elem_id="popa"):
gr.Markdown(":-._.-: Transformers.Agents Configuration :-._.-:")
gr.Markdown(" β Select Transformers.Agents backend engine. β ")
with gr.Row():
vraam = gr.Radio(choices=[*engines], label="Transformers.Agents inference engines", value=[*engines][-1],)
gr.Markdown(" β Select a model below. β ")
with gr.Row():
with gr.Group():
qtp_dons=gr.Dropdown(choices=[],label="Sambanova Models",scale=0)
ptq_dons=gr.Dropdown(choices=[],label="Nebius Models",scale=0)
gr.Markdown("For Demo purposes the number of Teams is limited to 1.")
with gr.Row(equal_height=True):
totgents = gr.Number(label="Number of Teams", value=1, scale=0,)
with gr.Column():
incnumthr = gr.Button("(+) Increase", size="sm", scale=0,)
incnumfou = gr.Button("(-) Decrease", size="sm", scale=0,)
incnumthr.click(fn=inc_genmancnt,inputs=totgents,outputs=totgents)
incnumfou.click(fn=dec_genmancnt,inputs=totgents,outputs=totgents)
gr.Markdown(" β Select agent tasks below. β (Each task will be attributed to a managed toolcalling agent. Defaults to all.)")
with gr.Row():
with gr.Accordion(label="Task List", open=False) as accdo:
gchkbgtwo=gr.CheckboxGroup(choices=[*all_tasks], label="Select Tasks", value=[*all_tasks],scale=1)
with gr.Column():
gr.Button("Check All",size="sm",scale=0).click(fn=check_lal,inputs=gchkbgtwo, outputs=gchkbgtwo)
gr.Button("Uncheck All",size="sm",scale=0).click(fn=uncheck_lal,inputs=gchkbgtwo, outputs=gchkbgtwo)
chatbot = gr.Chatbot([], elem_id="chatbot", type="messages",)
unput=gr.Textbox(placeholder="Prompt agents here...")
with gr.Row():
smos_btn=gr.Button("Run SmolAgents",size="md",)
gents_btn=gr.Button("Run Transformers.Agents",size="md")
with gr.Column():
sly = gr.File(label="Image,Video,Text,Image-OCR,Audio-ASR,Etc.",file_types=["file"],file_count="single", interactive=False)
with gr.Row():
my_tokens=gr.Slider(minimum=100,step=1, maximum=5000, value=1000, label="Maximum number of tokens/request")
gr.on(triggers=[iface.load,],fn=psh,inputs=[qip_dons],outputs=[qip_dons],).then(fn=qsh,inputs=[piq_dons],outputs=[piq_dons],).then(fn=qss,inputs=[ptq_dons],outputs=[ptq_dons],).then(fn=pss,inputs=[qtp_dons],outputs=[qtp_dons],)
smos_btn.click(plex, [unput, chatbot, vroom, qip_dons, piq_dons, totsmos, gchkbgone, my_tokens, sly], [chatbot]).then(clr,[unput,sly],[unput,sly])
gents_btn.click(plax, [unput, chatbot, vraam, qtp_dons, ptq_dons, totgents, gchkbgtwo, my_tokens, sly], [chatbot]).then(clr,[unput,sly],[unput,sly])
iface.launch() |