NetraEmbed / app.py
AdithyaSK's picture
Refactor app.py: improve code formatting and enhance readability
d047a23
"""
NetraEmbed Demo - Document Retrieval with BiGemma3 and ColGemma3
This demo allows you to:
1. Select a model (NetraEmbed, ColNetraEmbed, or Both)
2. Upload PDF files and index them
3. Search for relevant pages based on your query
HuggingFace Spaces deployment with ZeroGPU support.
"""
import spaces
import torch
import gradio as gr
from pdf2image import convert_from_path
from PIL import Image
from typing import List, Tuple, Optional
import math
import io
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns
from einops import rearrange
# Import from colpali_engine
from colpali_engine.models import (
BiGemma3,
BiGemmaProcessor3,
ColGemma3,
ColGemmaProcessor3,
)
from colpali_engine.interpretability import get_similarity_maps_from_embeddings
from colpali_engine.interpretability.similarity_map_utils import (
normalize_similarity_map,
)
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Device: {device}")
if torch.cuda.is_available():
print(f"GPU: {torch.cuda.get_device_name(0)}")
# Global state for models and indexed documents
class DocumentIndex:
def __init__(self):
self.images: List[Image.Image] = []
self.bigemma_embeddings = None
self.colgemma_embeddings = None
self.bigemma_model = None
self.bigemma_processor = None
self.colgemma_model = None
self.colgemma_processor = None
doc_index = DocumentIndex()
@spaces.GPU
def load_bigemma_model():
"""Load BiGemma3 model and processor."""
if doc_index.bigemma_model is None:
print("Loading BiGemma3 (NetraEmbed)...")
doc_index.bigemma_processor = BiGemmaProcessor3.from_pretrained(
"Cognitive-Lab/NetraEmbed",
use_fast=True,
)
doc_index.bigemma_model = BiGemma3.from_pretrained(
"Cognitive-Lab/NetraEmbed",
torch_dtype=torch.bfloat16,
device_map=device,
).eval()
print("βœ“ BiGemma3 loaded successfully")
return doc_index.bigemma_model, doc_index.bigemma_processor
@spaces.GPU
def load_colgemma_model():
"""Load ColGemma3 model and processor."""
if doc_index.colgemma_model is None:
print("Loading ColGemma3 (ColNetraEmbed)...")
doc_index.colgemma_model = ColGemma3.from_pretrained(
"Cognitive-Lab/ColNetraEmbed",
dtype=torch.bfloat16,
device_map=device,
).eval()
doc_index.colgemma_processor = ColGemmaProcessor3.from_pretrained(
"Cognitive-Lab/ColNetraEmbed",
use_fast=True,
)
print("βœ“ ColGemma3 loaded successfully")
return doc_index.colgemma_model, doc_index.colgemma_processor
def pdf_to_images(pdf_paths: List[str]) -> List[Image.Image]:
"""Convert PDF files to list of PIL Images."""
images = []
for pdf_path in pdf_paths:
try:
print(f"Converting PDF to images: {pdf_path}")
page_images = convert_from_path(pdf_path, dpi=200)
images.extend(page_images)
print(f"Converted {len(page_images)} pages from {pdf_path}")
except Exception as e:
print(f"❌ PDF conversion error for {pdf_path}: {str(e)}")
raise gr.Error(f"Failed to convert PDF: {str(e)}")
if len(images) >= 150:
raise gr.Error("The number of images should be less than 150.")
return images
@spaces.GPU
def index_bigemma_images(images: List[Image.Image]):
"""Index images with BiGemma3."""
model, processor = load_bigemma_model()
print(f"Indexing {len(images)} images with BiGemma3...")
embeddings_list = []
# Process in smaller batches to avoid memory issues
batch_size = 2
for i in range(0, len(images), batch_size):
batch = images[i : i + batch_size]
batch_images = processor.process_images(batch).to(device)
with torch.no_grad():
embeddings = model(**batch_images, embedding_dim=768)
embeddings_list.append(embeddings.cpu())
# Concatenate all embeddings
all_embeddings = torch.cat(embeddings_list, dim=0)
print(
f"βœ“ Indexed {len(images)} pages with BiGemma3 (shape: {all_embeddings.shape})"
)
return all_embeddings
@spaces.GPU
def index_colgemma_images(images: List[Image.Image]):
"""Index images with ColGemma3."""
model, processor = load_colgemma_model()
print(f"Indexing {len(images)} images with ColGemma3...")
embeddings_list = []
# Process in smaller batches to avoid memory issues
batch_size = 2
for i in range(0, len(images), batch_size):
batch = images[i : i + batch_size]
batch_images = processor.process_images(batch).to(device)
with torch.no_grad():
embeddings = model(**batch_images)
embeddings_list.append(embeddings.cpu())
# Concatenate all embeddings
all_embeddings = torch.cat(embeddings_list, dim=0)
print(
f"βœ“ Indexed {len(images)} pages with ColGemma3 (shape: {all_embeddings.shape})"
)
return all_embeddings
def index_document(pdf_files, model_choice: str) -> str:
"""Upload and index PDF documents."""
if not pdf_files:
return "⚠️ Please upload PDF documents first."
if not model_choice:
return "⚠️ Please select a model first."
try:
status_messages = []
# Convert PDFs to images
status_messages.append("⏳ Converting PDFs to images...")
pdf_paths = [f.name for f in pdf_files]
doc_index.images = pdf_to_images(pdf_paths)
num_pages = len(doc_index.images)
status_messages.append(f"βœ“ Converted to {num_pages} images")
# Index with BiGemma3
if model_choice in ["NetraEmbed (BiGemma3)", "Both"]:
status_messages.append("⏳ Indexing with BiGemma3...")
doc_index.bigemma_embeddings = index_bigemma_images(doc_index.images)
status_messages.append("βœ“ Indexed with BiGemma3")
# Index with ColGemma3
if model_choice in ["ColNetraEmbed (ColGemma3)", "Both"]:
status_messages.append("⏳ Indexing with ColGemma3...")
doc_index.colgemma_embeddings = index_colgemma_images(doc_index.images)
status_messages.append("βœ“ Indexed with ColGemma3")
final_status = (
"\n".join(status_messages) + "\n\nβœ… Document ready for querying!"
)
return final_status
except Exception as e:
import traceback
error_details = traceback.format_exc()
print(f"Indexing error: {error_details}")
return f"❌ Error indexing document: {str(e)}"
@spaces.GPU
def generate_colgemma_heatmap(
image: Image.Image,
query_embedding: torch.Tensor,
image_embedding: torch.Tensor,
) -> Image.Image:
"""Generate heatmap overlay for ColGemma3 results."""
try:
model, processor = load_colgemma_model()
# Re-process the single image
batch_images = processor.process_images([image]).to(device)
# Create image mask
if "input_ids" in batch_images and hasattr(model.config, "image_token_id"):
image_token_id = model.config.image_token_id
image_mask = batch_images["input_ids"] == image_token_id
else:
image_mask = torch.ones(
image_embedding.shape[0],
image_embedding.shape[1],
dtype=torch.bool,
device=device,
)
# Calculate n_patches
num_image_tokens = image_mask.sum().item()
n_side = int(math.sqrt(num_image_tokens))
n_patches = (
(n_side, n_side) if n_side * n_side == num_image_tokens else (16, 16)
)
# Generate similarity maps
similarity_maps_list = get_similarity_maps_from_embeddings(
image_embeddings=image_embedding.unsqueeze(0).to(device),
query_embeddings=query_embedding.to(device),
n_patches=n_patches,
image_mask=image_mask,
)
similarity_map = similarity_maps_list[0]
if similarity_map.dtype == torch.bfloat16:
similarity_map = similarity_map.float()
aggregated_map = torch.mean(similarity_map, dim=0)
# Create heatmap overlay
img_array = np.array(image.convert("RGBA"))
similarity_map_array = (
normalize_similarity_map(aggregated_map).to(torch.float32).cpu().numpy()
)
similarity_map_array = rearrange(similarity_map_array, "h w -> w h")
similarity_map_image = Image.fromarray(
(similarity_map_array * 255).astype("uint8")
).resize(image.size, Image.Resampling.BICUBIC)
# Create matplotlib figure
fig, ax = plt.subplots(figsize=(10, 10))
ax.imshow(img_array)
ax.imshow(
similarity_map_image,
cmap=sns.color_palette("mako", as_cmap=True),
alpha=0.5,
)
ax.set_axis_off()
plt.tight_layout()
# Convert to PIL Image
buffer = io.BytesIO()
plt.savefig(buffer, format="png", dpi=150, bbox_inches="tight", pad_inches=0)
buffer.seek(0)
heatmap_image = Image.open(buffer).copy()
plt.close()
return heatmap_image
except Exception as e:
print(f"❌ Heatmap generation error: {str(e)}")
return image
@spaces.GPU
def query_documents(
query: str, model_choice: str, top_k: int, show_heatmap: bool = False
) -> Tuple[Optional[List], Optional[str], Optional[List], Optional[str]]:
"""Query the indexed documents."""
if not doc_index.images:
return None, "⚠️ Please upload and index a document first.", None, None
if not query.strip():
return None, "⚠️ Please enter a query.", None, None
try:
bigemma_results = []
bigemma_text = ""
colgemma_results = []
colgemma_text = ""
# Query with BiGemma3
if model_choice in ["NetraEmbed (BiGemma3)", "Both"]:
if doc_index.bigemma_embeddings is None:
return (
None,
"⚠️ Please index the document with BiGemma3 first.",
None,
None,
)
model, processor = load_bigemma_model()
# Encode query
batch_query = processor.process_texts([query]).to(device)
with torch.no_grad():
query_embedding = model(**batch_query, embedding_dim=768)
# Compute scores
scores = processor.score(
qs=[query_embedding[0].cpu()],
ps=list(torch.unbind(doc_index.bigemma_embeddings)),
device=device,
)
# Get top-k results
top_k_actual = min(top_k, len(doc_index.images))
top_indices = scores[0].argsort(descending=True)[:top_k_actual]
# Format results
bigemma_text = "### BiGemma3 (NetraEmbed) Results\n\n"
for rank, idx in enumerate(top_indices):
score = scores[0, idx].item()
bigemma_text += (
f"**Rank {rank + 1}:** Page {idx.item() + 1} - Score: {score:.4f}\n"
)
bigemma_results.append(
(
doc_index.images[idx.item()],
f"Rank {rank + 1} - Page {idx.item() + 1} (Score: {score:.4f})",
)
)
# Query with ColGemma3
if model_choice in ["ColNetraEmbed (ColGemma3)", "Both"]:
if doc_index.colgemma_embeddings is None:
return (
bigemma_results if bigemma_results else None,
bigemma_text
if bigemma_text
else "⚠️ Please index the document with ColGemma3 first.",
None,
None,
)
model, processor = load_colgemma_model()
# Encode query
batch_query = processor.process_queries([query]).to(device)
with torch.no_grad():
query_embedding = model(**batch_query)
# Compute scores
scores = processor.score_multi_vector(
qs=[query_embedding[0].cpu()],
ps=list(torch.unbind(doc_index.colgemma_embeddings)),
device=device,
)
# Get top-k results
top_k_actual = min(top_k, len(doc_index.images))
top_indices = scores[0].argsort(descending=True)[:top_k_actual]
# Format results
colgemma_text = "### ColGemma3 (ColNetraEmbed) Results\n\n"
for rank, idx in enumerate(top_indices):
score = scores[0, idx].item()
colgemma_text += (
f"**Rank {rank + 1}:** Page {idx.item() + 1} - Score: {score:.2f}\n"
)
# Generate heatmap if requested
if show_heatmap:
heatmap_image = generate_colgemma_heatmap(
image=doc_index.images[idx.item()],
query_embedding=query_embedding,
image_embedding=doc_index.colgemma_embeddings[idx.item()],
)
colgemma_results.append(
(
heatmap_image,
f"Rank {rank + 1} - Page {idx.item() + 1} (Score: {score:.2f})",
)
)
else:
colgemma_results.append(
(
doc_index.images[idx.item()],
f"Rank {rank + 1} - Page {idx.item() + 1} (Score: {score:.2f})",
)
)
# Return results based on model choice
if model_choice == "NetraEmbed (BiGemma3)":
return bigemma_results, bigemma_text, None, None
elif model_choice == "ColNetraEmbed (ColGemma3)":
return None, None, colgemma_results, colgemma_text
else: # Both
return bigemma_results, bigemma_text, colgemma_results, colgemma_text
except Exception as e:
import traceback
error_details = traceback.format_exc()
print(f"Query error: {error_details}")
return None, f"❌ Error during query: {str(e)}", None, None
# Create Gradio interface
with gr.Blocks(title="NetraEmbed Demo") as demo:
# Header section
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("# NetraEmbed")
gr.HTML(
"""
<div style="display: flex; gap: 8px; flex-wrap: wrap; margin-bottom: 15px;">
<a href="https://arxiv.org/abs/2512.03514" target="_blank">
<img src="https://img.shields.io/badge/arXiv-2512.03514-b31b1b.svg" alt="Paper">
</a>
<a href="https://github.com/adithya-s-k/colpali" target="_blank">
<img src="https://img.shields.io/badge/GitHub-colpali-181717?logo=github" alt="GitHub">
</a>
<a href="https://huggingface.co/Cognitive-Lab/NetraEmbed" target="_blank">
<img src="https://img.shields.io/badge/πŸ€—%20HuggingFace-Model-yellow" alt="Model">
</a>
<a href="https://www.cognitivelab.in/blog/introducing-netraembed" target="_blank">
<img src="https://img.shields.io/badge/Blog-CognitiveLab-blue" alt="Blog">
</a>
<a href="https://huggingface.co/spaces/AdithyaSK/NetraEmbed" target="_blank">
<img src="https://img.shields.io/badge/πŸ€—%20Demo-HuggingFace%20Space-yellow" alt="Demo">
</a>
</div>
"""
)
gr.Markdown(
"""
**πŸš€ Universal Multilingual Multimodal Document Retrieval**
Upload a PDF document, select your model(s), and query using semantic search.
**Available Models:**
- **NetraEmbed (BiGemma3)**: Single-vector embedding with Matryoshka representation
Fast retrieval with cosine similarity
- **ColNetraEmbed (ColGemma3)**: Multi-vector embedding with late interaction
High-quality retrieval with MaxSim scoring and attention heatmaps
"""
)
with gr.Column(scale=1):
gr.HTML(
"""
<div style="text-align: center;">
<img src="https://cdn-uploads.huggingface.co/production/uploads/6442d975ad54813badc1ddf7/-fYMikXhSuqRqm-UIdulK.png"
alt="NetraEmbed Banner"
style="width: 100%; height: auto; border-radius: 8px;">
</div>
"""
)
gr.Markdown("---")
# Main interface
with gr.Row():
# Column 1: Model & Upload
with gr.Column(scale=1):
gr.Markdown("### πŸ€– Select Model & Upload")
model_select = gr.Radio(
choices=["NetraEmbed (BiGemma3)", "ColNetraEmbed (ColGemma3)", "Both"],
value="Both",
label="Select Model(s)",
)
pdf_upload = gr.File(
label="Upload PDFs", file_types=[".pdf"], file_count="multiple"
)
index_btn = gr.Button("πŸ“₯ Index Documents", variant="primary", size="sm")
index_status = gr.Textbox(
label="Indexing Status",
lines=8,
interactive=False,
value="Select model and upload PDFs to start",
)
# Column 2: Query & Results
with gr.Column(scale=2):
gr.Markdown("### πŸ”Ž Query Documents")
query_input = gr.Textbox(
label="Enter Query",
placeholder="e.g., financial report, organizational structure...",
lines=2,
)
with gr.Row():
top_k_slider = gr.Slider(
minimum=1,
maximum=10,
value=5,
step=1,
label="Top K Results",
scale=2,
)
heatmap_checkbox = gr.Checkbox(
label="Show Heatmaps (ColGemma3)",
value=False,
scale=1,
)
query_btn = gr.Button("πŸ” Search", variant="primary", size="sm")
gr.Markdown("---")
gr.Markdown("### πŸ“Š Results")
# Results section
with gr.Row(equal_height=True):
with gr.Column(scale=1):
bigemma_results_text = gr.Markdown(
value="*BiGemma3 results will appear here...*",
)
bigemma_gallery = gr.Gallery(
label="BiGemma3 - Top Retrieved Pages",
show_label=True,
columns=2,
height="auto",
object_fit="contain",
)
with gr.Column(scale=1):
colgemma_results_text = gr.Markdown(
value="*ColGemma3 results will appear here...*",
)
colgemma_gallery = gr.Gallery(
label="ColGemma3 - Top Retrieved Pages",
show_label=True,
columns=2,
height="auto",
object_fit="contain",
)
# Tips
with gr.Accordion("πŸ’‘ Tips", open=False):
gr.Markdown(
"""
- **Both models**: Compare results side-by-side
- **Scores**: BiGemma3 uses cosine similarity (-1 to 1), ColGemma3 uses MaxSim (higher is better)
- **Heatmaps**: Enable to visualize ColGemma3 attention patterns (brighter = higher attention)
- **Refresh**: If you change documents, refresh the page to clear the index
"""
)
# Event handlers
index_btn.click(
fn=index_document,
inputs=[pdf_upload, model_select],
outputs=[index_status],
)
query_btn.click(
fn=query_documents,
inputs=[query_input, model_select, top_k_slider, heatmap_checkbox],
outputs=[
bigemma_gallery,
bigemma_results_text,
colgemma_gallery,
colgemma_results_text,
],
)
# Enable queue for handling multiple requests
demo.queue(max_size=20)
if __name__ == "__main__":
demo.launch(debug=True)