|
import os |
|
import gradio as gr |
|
import requests |
|
import pandas as pd |
|
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM |
|
|
|
|
|
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" |
|
DEFAULT_HF_MODEL = "mistralai/Mistral-7B-Instruct-v0.1" |
|
|
|
|
|
class BasicAgent: |
|
def __init__(self, hf_token=None, model_name=DEFAULT_HF_MODEL): |
|
print("Initializing BasicAgent with LLM...") |
|
self.hf_token = hf_token |
|
self.model_name = model_name |
|
self.llm = None |
|
|
|
if hf_token: |
|
try: |
|
print(f"Loading model: {model_name}") |
|
self.tokenizer = AutoTokenizer.from_pretrained(model_name, token=hf_token) |
|
self.model = AutoModelForCausalLM.from_pretrained(model_name, token=hf_token) |
|
self.llm = pipeline( |
|
"text-generation", |
|
model=self.model, |
|
tokenizer=self.tokenizer, |
|
device_map="auto" |
|
) |
|
print("Model loaded successfully") |
|
except Exception as e: |
|
print(f"Error loading model: {e}") |
|
raise Exception(f"Could not load model: {e}") |
|
else: |
|
print("No HF token provided - agent will use default answers") |
|
|
|
def __call__(self, question: str) -> str: |
|
if not self.llm: |
|
return "This is a default answer (no LLM initialized)" |
|
|
|
try: |
|
print(f"Generating answer for question: {question[:50]}...") |
|
response = self.llm( |
|
question, |
|
max_new_tokens=150, |
|
do_sample=True, |
|
temperature=0.7, |
|
top_p=0.9 |
|
) |
|
return response[0]['generated_text'] |
|
except Exception as e: |
|
print(f"Error generating answer: {e}") |
|
return f"Error generating answer: {e}" |
|
|
|
def run_and_submit_all(hf_token: str, request: gr.Request): |
|
"""Main function to run evaluation and submit answers""" |
|
|
|
if not request.username: |
|
return "Please Login to Hugging Face with the button.", None |
|
|
|
username = request.username |
|
space_id = os.getenv("SPACE_ID") |
|
api_url = DEFAULT_API_URL |
|
questions_url = f"{api_url}/questions" |
|
submit_url = f"{api_url}/submit" |
|
|
|
|
|
try: |
|
agent = BasicAgent(hf_token=hf_token) |
|
except Exception as e: |
|
return f"Error initializing agent: {e}", None |
|
|
|
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" |
|
|
|
|
|
try: |
|
response = requests.get(questions_url, timeout=15) |
|
response.raise_for_status() |
|
questions_data = response.json() |
|
if not questions_data: |
|
return "Fetched questions list is empty or invalid format.", None |
|
except Exception as e: |
|
return f"Error fetching questions: {e}", None |
|
|
|
|
|
results_log = [] |
|
answers_payload = [] |
|
for item in questions_data: |
|
task_id = item.get("task_id") |
|
question_text = item.get("question") |
|
if not task_id or question_text is None: |
|
continue |
|
try: |
|
submitted_answer = agent(question_text) |
|
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) |
|
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer}) |
|
except Exception as e: |
|
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"}) |
|
|
|
if not answers_payload: |
|
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) |
|
|
|
|
|
submission_data = { |
|
"username": username.strip(), |
|
"agent_code": agent_code, |
|
"answers": answers_payload |
|
} |
|
|
|
try: |
|
response = requests.post(submit_url, json=submission_data, timeout=60) |
|
response.raise_for_status() |
|
result_data = response.json() |
|
final_status = ( |
|
f"Submission Successful!\n" |
|
f"User: {result_data.get('username')}\n" |
|
f"Overall Score: {result_data.get('score', 'N/A')}% " |
|
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" |
|
f"Message: {result_data.get('message', 'No message received.')}" |
|
) |
|
return final_status, pd.DataFrame(results_log) |
|
except Exception as e: |
|
return f"Submission Failed: {e}", pd.DataFrame(results_log) |
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("# LLM Agent Evaluation Runner") |
|
gr.Markdown(""" |
|
**Instructions:** |
|
1. Get your Hugging Face API token from [your settings](https://huggingface.co/settings/tokens) |
|
2. Enter your token below |
|
3. Log in to your Hugging Face account |
|
4. Click 'Run Evaluation & Submit All Answers' |
|
""") |
|
|
|
with gr.Row(): |
|
hf_token_input = gr.Textbox( |
|
label="Hugging Face API Token", |
|
type="password", |
|
placeholder="hf_xxxxxxxxxxxxxxxx", |
|
info="Required for LLM access" |
|
) |
|
|
|
gr.LoginButton() |
|
|
|
run_button = gr.Button("Run Evaluation & Submit All Answers") |
|
|
|
status_output = gr.Textbox(label="Run Status", lines=5) |
|
results_table = gr.DataFrame(label="Results", wrap=True) |
|
|
|
run_button.click( |
|
fn=run_and_submit_all, |
|
inputs=[hf_token_input], |
|
outputs=[status_output, results_table] |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |