from fastapi import FastAPI from fastapi.responses import StreamingResponse, JSONResponse from pydantic import BaseModel from typing import List, Optional import time import json import os import base64 import httpx from dotenv import load_dotenv load_dotenv() # Dummy imports for example from models import AVAILABLE_MODELS, MODEL_ALIASES # Ensure these are defined properly # Env variables IMAGE_API_URL = os.environ["IMAGE_API_URL"] SNAPZION_UPLOAD_URL = "https://upload.snapzion.com/api/public-upload" SNAPZION_API_KEY = os.environ["SNAP"] app = FastAPI() def unix_id(): return str(int(time.time() * 1000)) # === Models === @app.get("/v1/models") async def list_models(): return {"object": "list", "data": AVAILABLE_MODELS} # === Chat Completion === class Message(BaseModel): role: str content: str class ChatRequest(BaseModel): messages: List[Message] model: str stream: Optional[bool] = False @app.post("/v1/chat/completions") async def chat_completion(request: ChatRequest): model_id = MODEL_ALIASES.get(request.model, request.model) headers = { 'accept': 'text/event-stream', 'content-type': 'application/json', 'origin': 'https://www.chatwithmono.xyz', 'referer': 'https://www.chatwithmono.xyz/', 'user-agent': 'Mozilla/5.0', } payload = { "messages": [{"role": msg.role, "content": msg.content} for msg in request.messages], "model": model_id } if request.stream: async def event_stream(): chat_id = f"chatcmpl-{unix_id()}" created = int(time.time()) sent_done = False async with httpx.AsyncClient(timeout=120) as client: async with client.stream("POST", "https://www.chatwithmono.xyz/api/chat", headers=headers, json=payload) as response: async for line in response.aiter_lines(): if line.startswith("0:"): try: content_piece = json.loads(line[2:]) chunk_data = { "id": chat_id, "object": "chat.completion.chunk", "created": created, "model": model_id, "choices": [{ "delta": {"content": content_piece}, "index": 0, "finish_reason": None }] } yield f"data: {json.dumps(chunk_data)}\n\n" except: continue elif line.startswith(("e:", "d:")) and not sent_done: sent_done = True done_chunk = { "id": chat_id, "object": "chat.completion.chunk", "created": created, "model": model_id, "choices": [{ "delta": {}, "index": 0, "finish_reason": "stop" }] } yield f"data: {json.dumps(done_chunk)}\n\ndata: [DONE]\n\n" return StreamingResponse(event_stream(), media_type="text/event-stream") else: assistant_response = "" usage_info = {} async with httpx.AsyncClient(timeout=120) as client: async with client.stream("POST", "https://www.chatwithmono.xyz/api/chat", headers=headers, json=payload) as response: async for chunk in response.aiter_lines(): if chunk.startswith("0:"): try: piece = json.loads(chunk[2:]) assistant_response += piece except: continue elif chunk.startswith(("e:", "d:")): try: data = json.loads(chunk[2:]) usage_info = data.get("usage", {}) except: continue return JSONResponse(content={ "id": f"chatcmpl-{unix_id()}", "object": "chat.completion", "created": int(time.time()), "model": model_id, "choices": [{ "index": 0, "message": { "role": "assistant", "content": assistant_response }, "finish_reason": "stop" }], "usage": { "prompt_tokens": usage_info.get("promptTokens", 0), "completion_tokens": usage_info.get("completionTokens", 0), "total_tokens": usage_info.get("promptTokens", 0) + usage_info.get("completionTokens", 0), } }) # === Image Generation === class ImageGenerationRequest(BaseModel): prompt: str aspect_ratio: Optional[str] = "1:1" n: Optional[int] = 1 user: Optional[str] = None model: Optional[str] = "default" @app.post("/v1/images/generations") async def generate_images(request: ImageGenerationRequest): results = [] async with httpx.AsyncClient(timeout=60) as client: for _ in range(request.n): model = request.model or "default" if model in ["gpt-image-1", "dall-e-3", "dall-e-2", "nextlm-image-1"]: headers = { 'Content-Type': 'application/json', 'User-Agent': 'Mozilla/5.0', 'Referer': 'https://www.chatwithmono.xyz/', 'sec-ch-ua-platform': '"Windows"', 'sec-ch-ua': '"Not)A;Brand";v="8", "Chromium";v="138", "Google Chrome";v="138"', 'sec-ch-ua-mobile': '?0', } payload = { "prompt": request.prompt, "model": model } resp = await client.post("https://www.chatwithmono.xyz/api/image", headers=headers, json=payload) if resp.status_code != 200: return JSONResponse( status_code=502, content={"error": f"{model} generation failed", "details": resp.text} ) data = resp.json() b64_image = data.get("image") if not b64_image: return JSONResponse(status_code=502, content={"error": "Missing base64 image in response"}) data_uri = f"data:image/png;base64,{b64_image}" upload_headers = {"Authorization": SNAPZION_API_KEY} upload_files = { 'file': ('image.png', base64.b64decode(b64_image), 'image/png') } upload_resp = await client.post(SNAPZION_UPLOAD_URL, headers=upload_headers, files=upload_files) if upload_resp.status_code != 200: return JSONResponse( status_code=502, content={"error": "Upload failed", "details": upload_resp.text} ) upload_data = upload_resp.json() results.append({ "url": upload_data.get("url"), "b64_json": b64_image, "data_uri": data_uri, "model": model }) else: params = { "prompt": request.prompt, "aspect_ratio": request.aspect_ratio, "link": "typegpt.net" } resp = await client.get(IMAGE_API_URL, params=params) if resp.status_code != 200: return JSONResponse( status_code=502, content={"error": "Image generation failed", "details": resp.text} ) data = resp.json() results.append({ "url": data.get("image_link"), "b64_json": data.get("base64_output"), "retries": data.get("attempt"), "model": "default" }) return { "created": int(time.time()), "data": results }