Maria Tsilimos
commited on
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,408 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import time
|
2 |
+
import streamlit as st
|
3 |
+
import pandas as pd
|
4 |
+
import io
|
5 |
+
from transformers import pipeline
|
6 |
+
from streamlit_extras.stylable_container import stylable_container
|
7 |
+
import plotly.express as px
|
8 |
+
import zipfile
|
9 |
+
import os
|
10 |
+
from comet_ml import Experiment
|
11 |
+
import re
|
12 |
+
import numpy as np
|
13 |
+
import json
|
14 |
+
from cryptography.fernet import Fernet
|
15 |
+
|
16 |
+
st.set_page_config(layout="wide", page_title="Named Entity Recognition App")
|
17 |
+
|
18 |
+
|
19 |
+
COMET_API_KEY = os.environ.get("COMET_API_KEY")
|
20 |
+
COMET_WORKSPACE = os.environ.get("COMET_WORKSPACE")
|
21 |
+
COMET_PROJECT_NAME = os.environ.get("COMET_PROJECT_NAME")
|
22 |
+
|
23 |
+
comet_initialized = False
|
24 |
+
if COMET_API_KEY and COMET_WORKSPACE and COMET_PROJECT_NAME:
|
25 |
+
comet_initialized = True
|
26 |
+
|
27 |
+
|
28 |
+
if 'file_upload_attempts' not in st.session_state:
|
29 |
+
st.session_state['file_upload_attempts'] = 0
|
30 |
+
|
31 |
+
|
32 |
+
if 'encrypted_extracted_text' not in st.session_state:
|
33 |
+
st.session_state['encrypted_extracted_text'] = None
|
34 |
+
|
35 |
+
|
36 |
+
if 'json_dataframe' not in st.session_state:
|
37 |
+
st.session_state['json_dataframe'] = None
|
38 |
+
|
39 |
+
max_attempts = 10
|
40 |
+
|
41 |
+
|
42 |
+
@st.cache_resource
|
43 |
+
def load_ner_model():
|
44 |
+
|
45 |
+
try:
|
46 |
+
return pipeline("token-classification",
|
47 |
+
model="saattrupdan/nbailab-base-ner-scandi",
|
48 |
+
aggregation_strategy="max",
|
49 |
+
stride=128)
|
50 |
+
except Exception as e:
|
51 |
+
st.error(f"Failed to load NER model. Please check your internet connection or model availability: {e}")
|
52 |
+
st.stop()
|
53 |
+
|
54 |
+
|
55 |
+
|
56 |
+
@st.cache_resource
|
57 |
+
def load_encryption_key():
|
58 |
+
"""
|
59 |
+
Loads the Fernet encryption key from environment variables.
|
60 |
+
This key is crucial for encrypting/decrypting sensitive data.
|
61 |
+
It's cached as a resource to be loaded only once.
|
62 |
+
"""
|
63 |
+
try:
|
64 |
+
# Get the key string from environment variables
|
65 |
+
key_str = os.environ.get("FERNET_KEY")
|
66 |
+
if not key_str:
|
67 |
+
raise ValueError("FERNET_KEY environment variable not set. Cannot perform encryption/decryption.")
|
68 |
+
|
69 |
+
# Fernet key must be bytes, so encode the string
|
70 |
+
key_bytes = key_str.encode('utf-8')
|
71 |
+
return Fernet(key_bytes)
|
72 |
+
except ValueError as ve:
|
73 |
+
st.error(f"Configuration Error: {ve}. Please ensure the 'FERNET_KEY' environment variable is set securely in your deployment environment (e.g., Hugging Face Spaces secrets, Render environment variables) or in a local .env file for development.")
|
74 |
+
st.stop() # Stop the app if the key is not found, as security is compromised
|
75 |
+
except Exception as e:
|
76 |
+
st.error(f"An unexpected error occurred while loading encryption key: {e}. Please check your key format and environment settings.")
|
77 |
+
st.stop()
|
78 |
+
|
79 |
+
# Initialize the Fernet cipher instance
|
80 |
+
fernet = load_encryption_key()
|
81 |
+
|
82 |
+
def encrypt_text(text_content: str) -> bytes:
|
83 |
+
"""
|
84 |
+
Encrypts a string using the loaded Fernet cipher.
|
85 |
+
The input string is first encoded to UTF-8 bytes.
|
86 |
+
"""
|
87 |
+
return fernet.encrypt(text_content.encode('utf-8'))
|
88 |
+
|
89 |
+
def decrypt_text(encrypted_bytes: bytes) -> str | None:
|
90 |
+
"""
|
91 |
+
Decrypts bytes using the loaded Fernet cipher.
|
92 |
+
Returns the decrypted string, or None if decryption fails (e.g., tampering).
|
93 |
+
"""
|
94 |
+
try:
|
95 |
+
return fernet.decrypt(encrypted_bytes).decode('utf-8')
|
96 |
+
except Exception as e:
|
97 |
+
st.error(f"Decryption failed. This might indicate data tampering or an incorrect encryption key. Error: {e}")
|
98 |
+
return None
|
99 |
+
|
100 |
+
# --- UI Elements ---
|
101 |
+
st.subheader("Scandinavian JSON Entity Finder", divider="orange")
|
102 |
+
st.link_button("by nlpblogs", "https://nlpblogs.com", type="tertiary")
|
103 |
+
|
104 |
+
expander = st.expander("**Important notes on the Scandinavian JSON Entity Finder**")
|
105 |
+
expander.write('''
|
106 |
+
**Named Entities:** This Scandinavian JSON Entity Finder predicts four
|
107 |
+
(4) labels (“PER: person”, “LOC: location”, “ORG: organization”, “MISC:
|
108 |
+
miscellaneous”). Results are presented in an easy-to-read table, visualized in
|
109 |
+
an interactive tree map, pie chart, and bar chart, and are available for
|
110 |
+
download along with a Glossary of tags.
|
111 |
+
|
112 |
+
**How to Use:** Upload your JSON file. Then, click the 'Results' button
|
113 |
+
to extract and tag entities in your text data.
|
114 |
+
|
115 |
+
**Usage Limits:** You can request results up to 10 times.
|
116 |
+
|
117 |
+
**Language settings:** Please check and adjust the language settings in
|
118 |
+
your computer, so the Danish, Swedish, Norwegian, Icelandic and Faroese
|
119 |
+
characters are handled properly in your downloaded file.
|
120 |
+
|
121 |
+
**Customization:** To change the app's background color to white or
|
122 |
+
black, click the three-dot menu on the right-hand side of your app, go to
|
123 |
+
Settings and then Choose app theme, colors and fonts.
|
124 |
+
|
125 |
+
**Technical issues:** If your connection times out, please refresh the
|
126 |
+
page or reopen the app's URL.
|
127 |
+
|
128 |
+
For any errors or inquiries, please contact us at info@nlpblogs.com
|
129 |
+
''')
|
130 |
+
|
131 |
+
with st.sidebar:
|
132 |
+
container = st.container(border=True)
|
133 |
+
container.write("**Named Entity Recognition (NER)** is the task of "
|
134 |
+
"extracting and tagging entities in text data. Entities can be persons, "
|
135 |
+
"organizations, locations, countries, products, events etc.")
|
136 |
+
st.subheader("Related NLP Web Apps", divider="orange")
|
137 |
+
st.link_button("Italian URL & TXT Entity Finder",
|
138 |
+
"https://nlpblogs.com/shop/named-entity-recognition-ner/monolingual-ner-web-apps/italian-url-txt-entity-finder/",
|
139 |
+
type="primary")
|
140 |
+
|
141 |
+
|
142 |
+
uploaded_file = st.file_uploader("Choose a JSON file", type=["json"])
|
143 |
+
|
144 |
+
# Initialize text for the current run outside the if uploaded_file block
|
145 |
+
# This will be populated if a file is uploaded, otherwise it remains None
|
146 |
+
current_run_text = None
|
147 |
+
|
148 |
+
if uploaded_file is not None:
|
149 |
+
try:
|
150 |
+
# Read the content as bytes first, then decode for JSON parsing
|
151 |
+
file_contents_bytes = uploaded_file.read()
|
152 |
+
|
153 |
+
# Reset the file pointer after reading, so json.load can read from the beginning
|
154 |
+
uploaded_file.seek(0)
|
155 |
+
dados = json.load(uploaded_file)
|
156 |
+
|
157 |
+
# Attempt to convert JSON to DataFrame and extract text
|
158 |
+
try:
|
159 |
+
st.session_state['json_dataframe'] = pd.DataFrame(dados)
|
160 |
+
|
161 |
+
# Concatenate all content into a single string for NER
|
162 |
+
df_string_representation = st.session_state['json_dataframe'].to_string(index=False, header=False)
|
163 |
+
# Simple regex to remove non-alphanumeric characters but keep spaces and periods
|
164 |
+
text_content = re.sub(r'[^\w\s.]', '', df_string_representation)
|
165 |
+
# Remove the specific string "Empty DataFrame Columns" if it appears due to conversion
|
166 |
+
text_content = text_content.replace("Empty DataFrame Columns", "").strip()
|
167 |
+
current_run_text = text_content # Set text for current run
|
168 |
+
|
169 |
+
if not current_run_text.strip(): # Check if text is effectively empty
|
170 |
+
st.warning("No meaningful text could be extracted from the JSON DataFrame for analysis.")
|
171 |
+
current_run_text = None # Reset to None if empty
|
172 |
+
|
173 |
+
except ValueError:
|
174 |
+
# If direct conversion to DataFrame fails, try to extract strings directly from JSON structure
|
175 |
+
st.info("JSON data could not be directly converted to a simple DataFrame for display. Attempting to extract text directly.")
|
176 |
+
extracted_texts_list = []
|
177 |
+
if isinstance(dados, list):
|
178 |
+
for item in dados:
|
179 |
+
if isinstance(item, str):
|
180 |
+
extracted_texts_list.append(item)
|
181 |
+
elif isinstance(item, dict):
|
182 |
+
# Recursively get string values from dicts in a list
|
183 |
+
for val in item.values():
|
184 |
+
if isinstance(val, str):
|
185 |
+
extracted_texts_list.append(val)
|
186 |
+
elif isinstance(val, list):
|
187 |
+
for sub_val in val:
|
188 |
+
if isinstance(sub_val, str):
|
189 |
+
extracted_texts_list.append(sub_val)
|
190 |
+
elif isinstance(dados, dict):
|
191 |
+
# Get string values from a dictionary
|
192 |
+
for value in dados.values():
|
193 |
+
if isinstance(value, str):
|
194 |
+
extracted_texts_list.append(value)
|
195 |
+
elif isinstance(value, list):
|
196 |
+
for sub_val in value:
|
197 |
+
if isinstance(sub_val, str):
|
198 |
+
extracted_texts_list.append(sub_val)
|
199 |
+
|
200 |
+
if extracted_texts_list:
|
201 |
+
current_run_text = " ".join(extracted_texts_list).strip()
|
202 |
+
else:
|
203 |
+
st.warning("No string text could be extracted from the JSON for analysis.")
|
204 |
+
current_run_text = None
|
205 |
+
|
206 |
+
if current_run_text:
|
207 |
+
# --- ENCRYPT THE EXTRACTED TEXT BEFORE STORING IN SESSION STATE ---
|
208 |
+
encrypted_text_bytes = encrypt_text(current_run_text)
|
209 |
+
st.session_state['encrypted_extracted_text'] = encrypted_text_bytes
|
210 |
+
# Optionally clear the unencrypted version from session state if you only want the encrypted one
|
211 |
+
# st.session_state['extracted_text_for_ner'] = None
|
212 |
+
|
213 |
+
st.success("JSON file uploaded successfully. File content encrypted and secured. Due to security protocols, the file content is hidden.")
|
214 |
+
st.divider()
|
215 |
+
else:
|
216 |
+
st.session_state['encrypted_extracted_text'] = None
|
217 |
+
# st.session_state['extracted_text_for_ner'] = None
|
218 |
+
st.error("Could not extract meaningful text from the uploaded JSON file.")
|
219 |
+
|
220 |
+
except json.JSONDecodeError as e:
|
221 |
+
st.error(f"JSON Decode Error: {e}")
|
222 |
+
st.error("Please ensure the uploaded file contains valid JSON data.")
|
223 |
+
st.session_state['encrypted_extracted_text'] = None
|
224 |
+
st.session_state['json_dataframe'] = None
|
225 |
+
except Exception as e:
|
226 |
+
st.error(f"An unexpected error occurred during file processing: {e}")
|
227 |
+
st.session_state['encrypted_extracted_text'] = None
|
228 |
+
st.session_state['json_dataframe'] = None
|
229 |
+
|
230 |
+
|
231 |
+
# --- Results Button and Processing Logic ---
|
232 |
+
if st.button("Results"):
|
233 |
+
start_time = time.time()
|
234 |
+
if not comet_initialized:
|
235 |
+
st.warning("Comet ML not initialized. Check environment variables if you wish to log data.")
|
236 |
+
|
237 |
+
if st.session_state['file_upload_attempts'] >= max_attempts:
|
238 |
+
st.error(f"You have requested results {max_attempts} times. You have reached your daily request limit.")
|
239 |
+
st.stop()
|
240 |
+
|
241 |
+
# --- DECRYPT THE TEXT BEFORE PASSING TO NER MODEL ---
|
242 |
+
text_for_ner = None
|
243 |
+
if st.session_state['encrypted_extracted_text'] is not None:
|
244 |
+
text_for_ner = decrypt_text(st.session_state['encrypted_extracted_text'])
|
245 |
+
|
246 |
+
if text_for_ner is None or not text_for_ner.strip():
|
247 |
+
st.warning("No extractable text content available for analysis. Please upload a valid JSON file.")
|
248 |
+
st.stop()
|
249 |
+
|
250 |
+
st.session_state['file_upload_attempts'] += 1
|
251 |
+
|
252 |
+
with st.spinner("Analyzing text...", show_time=True):
|
253 |
+
model = load_ner_model()
|
254 |
+
text_entities = model(text_for_ner) # Use the decrypted text
|
255 |
+
df = pd.DataFrame(text_entities)
|
256 |
+
|
257 |
+
if 'word' in df.columns:
|
258 |
+
# Ensure 'word' column is string type before applying regex
|
259 |
+
if df['word'].dtype == 'object':
|
260 |
+
pattern = r'[^\w\s]' # Regex to remove non-alphanumeric characters but keep spaces and periods
|
261 |
+
df['word'] = df['word'].astype(str).replace(pattern, '', regex=True)
|
262 |
+
else:
|
263 |
+
st.warning("The 'word' column is not of string type; skipping character cleaning.")
|
264 |
+
else:
|
265 |
+
st.error("The 'word' column does not exist in the DataFrame. Cannot perform cleaning.")
|
266 |
+
st.stop() # Stop execution if the column is missing
|
267 |
+
|
268 |
+
# Replace empty strings with 'Unknown' and drop rows with NaN after cleaning
|
269 |
+
df = df.replace('', 'Unknown').dropna()
|
270 |
+
|
271 |
+
if df.empty:
|
272 |
+
st.warning("No entities were extracted from the uploaded text.")
|
273 |
+
st.stop()
|
274 |
+
|
275 |
+
if comet_initialized:
|
276 |
+
experiment = Experiment(
|
277 |
+
api_key=COMET_API_KEY,
|
278 |
+
workspace=COMET_WORKSPACE,
|
279 |
+
project_name=COMET_PROJECT_NAME,
|
280 |
+
)
|
281 |
+
experiment.log_parameter("input_text_length", len(text_for_ner))
|
282 |
+
experiment.log_table("predicted_entities", df)
|
283 |
+
|
284 |
+
# --- Display Results ---
|
285 |
+
properties = {"border": "2px solid gray", "color": "blue", "font-size": "16px"}
|
286 |
+
df_styled = df.style.set_properties(**properties)
|
287 |
+
st.dataframe(df_styled, use_container_width=True)
|
288 |
+
|
289 |
+
with st.expander("See Glossary of tags"):
|
290 |
+
st.write('''
|
291 |
+
'**word**': ['entity extracted from your text data']
|
292 |
+
|
293 |
+
'**score**': ['accuracy score; how accurately a tag has been assigned to
|
294 |
+
a given entity']
|
295 |
+
|
296 |
+
'**entity_group**': ['label (tag) assigned to a given extracted entity']
|
297 |
+
|
298 |
+
'**start**': ['index of the start of the corresponding entity']
|
299 |
+
|
300 |
+
'**end**': ['index of the end of the corresponding entity']
|
301 |
+
''')
|
302 |
+
|
303 |
+
entity_groups = {"PER": "person",
|
304 |
+
"LOC": "location",
|
305 |
+
"ORG": "organization",
|
306 |
+
"MISC": "miscellaneous",
|
307 |
+
}
|
308 |
+
|
309 |
+
st.subheader("Grouped entities", divider = "orange")
|
310 |
+
|
311 |
+
# Convert entity_groups dictionary to a list of (key, title) tuples
|
312 |
+
entity_items = list(entity_groups.items())
|
313 |
+
# Define how many tabs per row
|
314 |
+
tabs_per_row = 5
|
315 |
+
# Loop through the entity items in chunks
|
316 |
+
for i in range(0, len(entity_items), tabs_per_row):
|
317 |
+
current_row_entities = entity_items[i : i + tabs_per_row]
|
318 |
+
tab_titles = [item[1] for item in current_row_entities]
|
319 |
+
|
320 |
+
tabs = st.tabs(tab_titles)
|
321 |
+
for j, (entity_group_key, tab_title) in enumerate(current_row_entities):
|
322 |
+
with tabs[j]:
|
323 |
+
if entity_group_key in df["entity_group"].unique():
|
324 |
+
df_filtered = df[df["entity_group"] == entity_group_key]
|
325 |
+
st.dataframe(df_filtered, use_container_width=True)
|
326 |
+
else:
|
327 |
+
st.info(f"No '{tab_title}' entities found in the text.")
|
328 |
+
# Display an empty DataFrame for consistency if no entities are found
|
329 |
+
st.dataframe(pd.DataFrame({
|
330 |
+
'entity_group': [entity_group_key],
|
331 |
+
'score': [np.nan],
|
332 |
+
'word': [np.nan],
|
333 |
+
'start': [np.nan],
|
334 |
+
'end': [np.nan]
|
335 |
+
}), hide_index=True)
|
336 |
+
|
337 |
+
st.divider()
|
338 |
+
|
339 |
+
# --- Visualizations ---
|
340 |
+
st.subheader("Tree map", divider="orange")
|
341 |
+
fig_treemap = px.treemap(df, path=[px.Constant("all"), 'word',
|
342 |
+
'entity_group'],
|
343 |
+
values='score', color='entity_group')
|
344 |
+
fig_treemap.update_layout(margin=dict(t=50, l=25, r=25, b=25))
|
345 |
+
st.plotly_chart(fig_treemap)
|
346 |
+
if comet_initialized:
|
347 |
+
experiment.log_figure(figure=fig_treemap, figure_name="entity_treemap")
|
348 |
+
|
349 |
+
value_counts1 = df['entity_group'].value_counts()
|
350 |
+
final_df_counts = value_counts1.reset_index().rename(columns={"index": "entity_group"})
|
351 |
+
|
352 |
+
col1, col2 = st.columns(2)
|
353 |
+
with col1:
|
354 |
+
st.subheader("Pie Chart", divider="orange")
|
355 |
+
fig_pie = px.pie(final_df_counts, values='count', names='entity_group',
|
356 |
+
hover_data=['count'], labels={'count': 'count'}, title='Percentage of predicted labels')
|
357 |
+
fig_pie.update_traces(textposition='inside', textinfo='percent+label')
|
358 |
+
st.plotly_chart(fig_pie)
|
359 |
+
if comet_initialized:
|
360 |
+
experiment.log_figure(figure=fig_pie, figure_name="label_pie_chart")
|
361 |
+
|
362 |
+
with col2:
|
363 |
+
st.subheader("Bar Chart", divider="orange")
|
364 |
+
fig_bar = px.bar(final_df_counts, x="count", y="entity_group", color="entity_group", text_auto=True,
|
365 |
+
title='Occurrences of predicted labels')
|
366 |
+
st.plotly_chart(fig_bar)
|
367 |
+
if comet_initialized:
|
368 |
+
experiment.log_figure(figure=fig_bar, figure_name="label_bar_chart")
|
369 |
+
|
370 |
+
# --- Downloadable Content ---
|
371 |
+
dfa = pd.DataFrame(
|
372 |
+
data={
|
373 |
+
'Column Name': ['word', 'entity_group','score', 'start', 'end'],
|
374 |
+
'Description': [
|
375 |
+
'entity extracted from your text data',
|
376 |
+
'label (tag) assigned to a given extracted entity',
|
377 |
+
'accuracy score; how accurately a tag has been assigned to a given entity',
|
378 |
+
'index of the start of the corresponding entity',
|
379 |
+
'index of the end of the corresponding entity',
|
380 |
+
]
|
381 |
+
}
|
382 |
+
)
|
383 |
+
|
384 |
+
buf = io.BytesIO()
|
385 |
+
with zipfile.ZipFile(buf, "w") as myzip:
|
386 |
+
myzip.writestr("Summary of the results.csv", df.to_csv(index=False))
|
387 |
+
myzip.writestr("Glossary of tags.csv", dfa.to_csv(index=False))
|
388 |
+
|
389 |
+
with stylable_container(
|
390 |
+
key="download_button",
|
391 |
+
css_styles="""button { background-color: yellow; border: 1px solid black; padding: 5px; color: black; }""",
|
392 |
+
):
|
393 |
+
st.download_button(
|
394 |
+
label="Download zip file",
|
395 |
+
data=buf.getvalue(),
|
396 |
+
file_name="nlpblogs_ner_results.zip",
|
397 |
+
mime="application/zip",
|
398 |
+
)
|
399 |
+
if comet_initialized:
|
400 |
+
experiment.log_asset(buf.getvalue(), file_name="downloadable_results.zip")
|
401 |
+
|
402 |
+
st.divider()
|
403 |
+
if comet_initialized:
|
404 |
+
experiment.end()
|
405 |
+
end_time = time.time()
|
406 |
+
elapsed_time = end_time - start_time
|
407 |
+
st.info(f"Results processed in **{elapsed_time:.2f} seconds**.")
|
408 |
+
st.write(f"Number of times you requested results: **{st.session_state['file_upload_attempts']}/{max_attempts}**")
|