|
import time |
|
import streamlit as st |
|
import pandas as pd |
|
import io |
|
from transformers import pipeline |
|
from streamlit_extras.stylable_container import stylable_container |
|
import plotly.express as px |
|
import zipfile |
|
import os |
|
from comet_ml import Experiment |
|
import re |
|
import numpy as np |
|
from bs4 import BeautifulSoup |
|
|
|
st.set_page_config(layout="wide", page_title="Named Entity Recognition App") |
|
|
|
|
|
|
|
|
|
COMET_API_KEY = os.environ.get("COMET_API_KEY") |
|
COMET_WORKSPACE = os.environ.get("COMET_WORKSPACE") |
|
COMET_PROJECT_NAME = os.environ.get("COMET_PROJECT_NAME") |
|
|
|
comet_initialized = False |
|
if COMET_API_KEY and COMET_WORKSPACE and COMET_PROJECT_NAME: |
|
comet_initialized = True |
|
|
|
|
|
if 'file_upload_attempts' not in st.session_state: |
|
st.session_state['file_upload_attempts'] = 0 |
|
|
|
max_attempts = 10 |
|
|
|
|
|
@st.cache_resource |
|
def load_ner_model(): |
|
"""Loads the pre-trained NER model and caches it.""" |
|
return pipeline("token-classification", model="dslim/bert-base-NER", aggregation_strategy="max") |
|
|
|
|
|
st.subheader("English HTML Entity Finder", divider="rainbow") |
|
st.link_button("by nlpblogs", "https://nlpblogs.com", type="tertiary") |
|
|
|
expander = st.expander("**Important notes on the English HTML Entity Finder**") |
|
expander.write(''' |
|
**Named Entities:** This English HTML Entity Finder predicts four (4) labels (“PER: person”, “LOC: location”, “ORG: organization”, “MISC: miscellaneous”). Results are presented in an easy-to-read table, visualized in an interactive tree map, pie chart, and bar chart, and are available for download along with a Glossary of tags. |
|
|
|
**How to Use:** Upload your html file. Then, click the 'Results' button to extract and tag entities in your text data. |
|
|
|
**Usage Limits:** You can request results up to 10 times. |
|
|
|
**Customization:** To change the app's background color to white or black, click the three-dot menu on the right-hand side of your app, go to Settings and then Choose app theme, colors and fonts. |
|
|
|
**Technical issues:** If your connection times out, please refresh the page or reopen the app's URL. |
|
|
|
For any errors or inquiries, please contact us at info@nlpblogs.com |
|
''') |
|
|
|
with st.sidebar: |
|
container = st.container(border=True) |
|
container.write("**Named Entity Recognition (NER)** is the task of extracting and tagging entities in text data. Entities can be persons, organizations, locations, countries, products, events etc.") |
|
st.subheader("Related NLP Web Apps", divider="rainbow") |
|
st.link_button("Italian URL & TXT Entity Finder", "https://nlpblogs.com/shop/named-entity-recognition-ner/monolingual-ner-web-apps/italian-url-txt-entity-finder/", type="primary") |
|
|
|
|
|
|
|
|
|
|
|
|
|
uploaded_file = st.file_uploader("Choose an HTML file", type="html") |
|
text = None |
|
df = None |
|
|
|
|
|
if uploaded_file is not None: |
|
|
|
html_content = uploaded_file.read().decode("utf-8") |
|
|
|
|
|
|
|
st.success("File uploaded successfully. Due to security protocols, the file content is hidden.") |
|
|
|
|
|
soup = BeautifulSoup(html_content, 'html.parser') |
|
text = soup.get_text() |
|
|
|
|
|
|
|
|
|
|
|
st.divider() |
|
|
|
|
|
if st.button("Results"): |
|
start_time = time.time() |
|
if not comet_initialized: |
|
st.warning("Comet ML not initialized. Check environment variables if you wish to log data.") |
|
|
|
if st.session_state['file_upload_attempts'] >= max_attempts: |
|
st.error(f"You have requested results {max_attempts} times. You have reached your daily request limit.") |
|
st.stop() |
|
|
|
if text is None: |
|
st.warning("Please upload a supported file (.pdf or .docx) before requesting results.") |
|
st.stop() |
|
|
|
st.session_state['file_upload_attempts'] += 1 |
|
|
|
with st.spinner("Analyzing text...", show_time=True): |
|
|
|
model = load_ner_model() |
|
text_entities = model(text) |
|
df = pd.DataFrame(text_entities) |
|
|
|
|
|
|
|
if 'word' in df.columns: |
|
st.write("Data type of 'word' column:", df['word'].dtype) |
|
|
|
|
|
|
|
|
|
pattern = r'[^\w\s]' |
|
if 'word' in df.columns: |
|
df['word'] = df['word'].replace(pattern, '', regex=True) |
|
else: |
|
st.error("The 'word' column does not exist in the DataFrame. Cannot perform cleaning.") |
|
st.stop() |
|
df = df.replace('', 'Unknown').dropna() |
|
|
|
|
|
|
|
if df.empty: |
|
st.warning("No entities were extracted from the uploaded text.") |
|
st.stop() |
|
|
|
if comet_initialized: |
|
experiment = Experiment( |
|
api_key=COMET_API_KEY, |
|
workspace=COMET_WORKSPACE, |
|
project_name=COMET_PROJECT_NAME, |
|
) |
|
experiment.log_parameter("input_text_length", len(text)) |
|
experiment.log_table("predicted_entities", df) |
|
|
|
|
|
properties = {"border": "2px solid gray", "color": "blue", "font-size": "16px"} |
|
df_styled = df.style.set_properties(**properties) |
|
st.dataframe(df_styled, use_container_width=True) |
|
|
|
with st.expander("See Glossary of tags"): |
|
st.write(''' |
|
'**word**': ['entity extracted from your text data'] |
|
|
|
'**score**': ['accuracy score; how accurately a tag has been assigned to a given entity'] |
|
|
|
'**entity_group**': ['label (tag) assigned to a given extracted entity'] |
|
|
|
'**start**': ['index of the start of the corresponding entity'] |
|
|
|
'**end**': ['index of the end of the corresponding entity'] |
|
''') |
|
|
|
|
|
entity_groups = {"PER": "person", |
|
"LOC": "location", |
|
"ORG": "organization", |
|
"MISC": "miscellaneous", |
|
|
|
|
|
} |
|
|
|
|
|
|
|
st.subheader("Grouped entities", divider = "blue") |
|
|
|
|
|
|
|
entity_items = list(entity_groups.items()) |
|
|
|
tabs_per_row = 5 |
|
|
|
for i in range(0, len(entity_items), tabs_per_row): |
|
current_row_entities = entity_items[i : i + tabs_per_row] |
|
tab_titles = [item[1] for item in current_row_entities] |
|
|
|
tabs = st.tabs(tab_titles) |
|
for j, (entity_group_key, tab_title) in enumerate(current_row_entities): |
|
with tabs[j]: |
|
if entity_group_key in df["entity_group"].unique(): |
|
df_filtered = df[df["entity_group"] == entity_group_key] |
|
st.dataframe(df_filtered, use_container_width=True) |
|
else: |
|
st.info(f"No '{tab_title}' entities found in the text.") |
|
st.dataframe(pd.DataFrame({ |
|
'entity_group': [entity_group_key], |
|
'score': [np.nan], |
|
'word': [np.nan], |
|
'start': [np.nan], |
|
'end': [np.nan] |
|
}), hide_index=True) |
|
|
|
st.divider() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
st.subheader("Tree map", divider="rainbow") |
|
fig_treemap = px.treemap(df, path=[px.Constant("all"), 'word', 'entity_group'], |
|
values='score', color='entity_group') |
|
fig_treemap.update_layout(margin=dict(t=50, l=25, r=25, b=25)) |
|
st.plotly_chart(fig_treemap) |
|
if comet_initialized: |
|
experiment.log_figure(figure=fig_treemap, figure_name="entity_treemap") |
|
|
|
value_counts1 = df['entity_group'].value_counts() |
|
final_df_counts = value_counts1.reset_index().rename(columns={"index": "entity_group"}) |
|
|
|
col1, col2 = st.columns(2) |
|
with col1: |
|
st.subheader("Pie Chart", divider="rainbow") |
|
fig_pie = px.pie(final_df_counts, values='count', names='entity_group', hover_data=['count'], labels={'count': 'count'}, title='Percentage of predicted labels') |
|
fig_pie.update_traces(textposition='inside', textinfo='percent+label') |
|
st.plotly_chart(fig_pie) |
|
if comet_initialized: |
|
experiment.log_figure(figure=fig_pie, figure_name="label_pie_chart") |
|
|
|
with col2: |
|
st.subheader("Bar Chart", divider="rainbow") |
|
fig_bar = px.bar(final_df_counts, x="count", y="entity_group", color="entity_group", text_auto=True, title='Occurrences of predicted labels') |
|
st.plotly_chart(fig_bar) |
|
if comet_initialized: |
|
experiment.log_figure(figure=fig_bar, figure_name="label_bar_chart") |
|
|
|
|
|
dfa = pd.DataFrame( |
|
data={ |
|
'Column Name': ['word', 'entity_group','score', 'start', 'end'], |
|
'Description': [ |
|
'entity extracted from your text data', |
|
'label (tag) assigned to a given extracted entity', |
|
'accuracy score; how accurately a tag has been assigned to a given entity', |
|
'index of the start of the corresponding entity', |
|
'index of the end of the corresponding entity', |
|
] |
|
} |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
buf = io.BytesIO() |
|
with zipfile.ZipFile(buf, "w") as myzip: |
|
myzip.writestr("Summary of the results.csv", df.to_csv(index=False)) |
|
myzip.writestr("Glossary of tags.csv", dfa.to_csv(index=False)) |
|
|
|
with stylable_container( |
|
key="download_button", |
|
css_styles="""button { background-color: yellow; border: 1px solid black; padding: 5px; color: black; }""", |
|
): |
|
st.download_button( |
|
label="Download zip file", |
|
data=buf.getvalue(), |
|
file_name="nlpblogs_ner_results.zip", |
|
mime="application/zip", |
|
) |
|
if comet_initialized: |
|
experiment.log_asset(buf.getvalue(), file_name="downloadable_results.zip") |
|
|
|
st.divider() |
|
if comet_initialized: |
|
experiment.end() |
|
end_time = time.time() |
|
elapsed_time = end_time - start_time |
|
st.info(f"Results processed in **{elapsed_time:.2f} seconds**.") |
|
st.write(f"Number of times you requested results: **{st.session_state['file_upload_attempts']}/{max_attempts}**") |
|
|