File size: 15,069 Bytes
099d76a
 
 
 
 
 
 
 
 
 
 
 
 
 
74dfd9c
099d76a
 
 
 
 
 
 
 
 
 
 
0caef9c
099d76a
 
0caef9c
035e71f
0caef9c
035e71f
0caef9c
035e71f
 
3a22f5a
 
035e71f
 
 
 
 
 
 
 
 
099d76a
0caef9c
099d76a
 
 
 
d7c896c
099d76a
1e3d10f
 
099d76a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e3d10f
099d76a
 
 
 
 
 
 
 
 
1e3d10f
099d76a
1e3d10f
099d76a
 
 
 
1e3d10f
099d76a
3da0bd9
76697bb
910a689
 
099d76a
 
 
76697bb
1e3d10f
099d76a
 
1e3d10f
099d76a
 
 
 
 
 
 
 
 
 
 
 
 
1e3d10f
099d76a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e3d10f
099d76a
 
1e3d10f
099d76a
 
1e3d10f
099d76a
 
 
 
 
 
 
 
 
 
 
 
 
035e71f
 
 
 
 
 
 
 
 
 
1e3d10f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
099d76a
1e3d10f
 
099d76a
1e3d10f
 
099d76a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e3d10f
099d76a
1e3d10f
099d76a
 
 
 
 
 
 
 
 
 
1e3d10f
099d76a
 
 
 
 
 
 
 
 
 
1e3d10f
099d76a
 
 
 
 
 
1e3d10f
099d76a
 
 
035e71f
 
099d76a
035e71f
 
 
 
 
 
 
 
099d76a
035e71f
 
 
 
099d76a
 
 
 
 
1e3d10f
 
 
099d76a
1e3d10f
 
 
 
099d76a
1e3d10f
 
099d76a
 
1e3d10f
099d76a
 
 
 
 
1e3d10f
 
 
 
099d76a
1e3d10f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
import requests
import streamlit as st
from bs4 import BeautifulSoup
import pandas as pd
from transformers import pipeline
import plotly.express as px
import time
import io
import os  
from comet_ml import Experiment 
import zipfile
import re
from streamlit_extras.stylable_container import stylable_container
import numpy as np
from transformers import AutoTokenizer, AutoModelForTokenClassification

st.set_page_config(layout="wide", page_title="Named Entity Recognition App")

COMET_API_KEY = os.environ.get("COMET_API_KEY")
COMET_WORKSPACE = os.environ.get("COMET_WORKSPACE")
COMET_PROJECT_NAME = os.environ.get("COMET_PROJECT_NAME")

comet_initialized = False
if COMET_API_KEY and COMET_WORKSPACE and COMET_PROJECT_NAME:
    comet_initialized = True

st.subheader("Text & URL Chinese NER App", divider="rainbow")
st.link_button("by nlpblogs", "https://nlpblogs.com", type="tertiary")

expander = st.expander("**Important notes on the Text & URL Chinese NER App**")
expander.write('''
        **Named Entities:** This Text & URL Chinese NER App predicts eighteen (18) labels ("**CARDINAL**: cardinal number”, “**DATE**: date”, “**EVENT**: event name”, “**FAC**: facilities”, “**GPE**: geopolitical entity”, "**LANGUAGE**: language", "**LAW**: law", "**LOC**: location", "**MONEY**: money", "**NORP**: ethnic, religious, political groups", "**ORDINAL**: ordinal number", "**ORG**: organization", "**PERCENT**: percent value", "**PERSON**: person", "**PRODUCT**: product", "**QUANTITY**: quantity", "**TIME**: time", "**WORK_OF_ART**: work of art"). Results are presented in an easy-to-read table, visualized in an interactive tree map, pie chart, and bar chart, and are available for download along with a Glossary of tags.
        
        **How to Use:** Paste a URL, and then press Enter. If you type or paste text, just press Ctrl + Enter.
        
        **Usage Limits:** You can request results up to 10 times.

        **Language settings:** Please check and adjust the language settings in your computer, so the Chinese characters are handled properly in your downloaded file.
        
        **Customization:** To change the app's background color to white or black, click the three-dot menu on the right-hand side of your app, go to Settings and then Choose app theme, colors and fonts.
        
        **Technical issues:** If your connection times out, please refresh the page or reopen the app's URL.
        
        For any errors or inquiries, please contact us at info@nlpblogs.com
    ''')




with st.sidebar:
    container = st.container(border=True)
    container.write("**Named Entity Recognition (NER)** is the task of extracting and tagging entities in text data. Entities can be persons, organizations, locations, countries, products, events etc.")
    st.subheader("Related NLP Web Apps", divider="rainbow")
    st.link_button("English HTML Entity Finder", "https://nlpblogs.com/shop/named-entity-recognition-ner/english-html-entity-finder/", type = "primary")

    if 'source_type_attempts' not in st.session_state:
        st.session_state['source_type_attempts'] = 0
max_attempts = 10 

def clear_url_input():
    st.session_state.url = ""

def clear_text_input():
    st.session_state.my_text_area = ""

url = st.text_input("Enter URL from the internet, and then press Enter:", key="url")
st.button("Clear URL", on_click=clear_url_input)
text = st.text_area("Type or paste your text below, and then press Ctrl + Enter", key='my_text_area')
st.button("Clear Text", on_click=clear_text_input)

source_type = None
input_content = None
text_to_process = None

if url:
    source_type = 'url'
    input_content = url
elif text:
    source_type = 'text'
    input_content = text

if source_type:
    start_time = time.time() # Start timer here

    st.subheader("Results", divider = "rainbow")
    
    if st.session_state['source_type_attempts'] >= max_attempts:
        st.error(f"You have requested results {max_attempts} times. You have reached your daily request limit.")
        st.stop()
    
    st.session_state['source_type_attempts'] += 1

    


    
    @st.cache_resource
    def load_ner_model():
        return pipeline("token-classification", model= "ckiplab/bert-base-chinese-ner", aggregation_strategy="max")
    
    model = load_ner_model()
    experiment = None 
    
    try:
        if source_type == 'url':
            if not url.startswith(("http://", "https://")):
                st.error("Please enter a valid URL starting with 'http://' or 'https://'.")
            else:
                with st.spinner(f"Fetching and parsing content from **{url}**...", show_time=True):
                    f = requests.get(url, timeout=10)
                    f.raise_for_status()  # Raise an HTTPError for bad responses (4xx or 5xx)
                    soup = BeautifulSoup(f.text, 'html.parser')
                    text_to_process = soup.get_text(separator=' ', strip=True)
                    st.divider()
                    st.write("**Input text content**")
                    st.write(text_to_process[:500] + "..." if len(text_to_process) > 500 else text_to_process)
                            
        elif source_type == 'text':
            text_to_process = text
            st.divider()
            st.write("**Input text content**")
            st.write(text_to_process[:500] + "..." if len(text_to_process) > 500 else text_to_process)

        if text_to_process and len(text_to_process.strip()) > 0: 
            with st.spinner("Analyzing text...", show_time=True):
                entities = model(text_to_process)
                data = []
                for entity in entities:
                    data.append({
                        'word': entity['word'],
                        'entity_group': entity['entity_group'],
                        'score': entity['score'],
                        'start': entity['start'], # Include start and end for download
                        'end': entity['end']
                    })
                df = pd.DataFrame(data)
                                
                pattern = r'[^\w\s]'
                df['word'] = df['word'].replace(pattern, '', regex=True)
                                
                df = df.replace('', 'Unknown')
                st.dataframe(df)
                                
                if comet_initialized:
                    experiment = Experiment(
                        api_key=COMET_API_KEY,
                        workspace=COMET_WORKSPACE,
                        project_name=COMET_PROJECT_NAME,
                    )
                    experiment.log_parameter("input_source_type", source_type)
                    experiment.log_parameter("input_content_length", len(input_content))
                    experiment.log_table("predicted_entities", df)

                with st.expander("See Glossary of tags"):
                    st.write('''
                    '**word**': ['entity extracted from your text data']
            
                    '**score**': ['accuracy score; how accurately a tag has been assigned to a given entity']
            
                    '**entity_group**': ['label (tag) assigned to a given extracted entity']
            
                    '**start**': ['index of the start of the corresponding entity']
            
                    '**end**': ['index of the end of the corresponding entity']
                    ''')

                
                entity_groups = {"CARDINAL": "cardinal number",                         
                                 "DATE": "date",                         
                                 "EVENT": "event name",                         
                                 "FAC": "facilities",                         
                                 "GPE": "geopolitical entity",                         
                                 "LANGUAGE": "language",                          
                                 "LAW": "law",                         
                                 "LOC": "location",                         
                                 "MONEY": "money",                         
                                 "NORP": "ethnic, religious, political groups",                         
                                 "ORDINAL": "ordinal number",                         
                                 "ORG": "organization",                         
                                 "PERCENT": "percent value",                         
                                 "PERSON": "person",                         
                                 "PRODUCT": "product",                         
                                 "QUANTITY": "quantity",                         
                                 "TIME": "time",                         
                                 "WORK_OF_ART": "work of art",                                                                                               
                                }
                
                st.subheader("Grouped entities", divider = "rainbow")
                                   
                # Convert entity_groups dictionary to a list of (key, title) tuples
                entity_items = list(entity_groups.items())
                    
                # Define how many tabs per row                   
                tabs_per_row = 5
                for i in range(0, len(entity_items), tabs_per_row):
                    current_row_entities = entity_items[i : i + tabs_per_row]
                    tab_titles = [item[1] for item in current_row_entities]
                    tabs = st.tabs(tab_titles)
                    for j, (entity_group_key, tab_title) in enumerate(current_row_entities):
                        with tabs[j]:
                            if entity_group_key in df["entity_group"].unique():
                                df_filtered = df[df["entity_group"] == entity_group_key]
                                st.dataframe(df_filtered, use_container_width=True)
                            else:
                                st.info(f"No '{tab_title}' entities found in the text.")
                                st.dataframe(pd.DataFrame({
                                        'entity_group': [entity_group_key],
                                        'score': [np.nan],
                                        'word': [np.nan],
                                        'start': [np.nan],
                                        'end': [np.nan]
                                    }), hide_index=True)
                                                    
                st.divider()
                                                
                if not df.empty:
                    st.markdown("---")
                    st.subheader("Treemap", divider="rainbow")
                    fig = px.treemap(df, path=[px.Constant("all"), 'entity_group', 'word'],
                                     values='score', color='entity_group',
                                     )
                    fig.update_layout(margin=dict(t=50, l=25, r=25, b=25))
                    st.plotly_chart(fig, use_container_width=True)
                    if comet_initialized and experiment: 
                        experiment.log_figure(figure=fig, figure_name="entity_treemap")
                                                            
                    value_counts = df['entity_group'].value_counts().reset_index()
                    value_counts.columns = ['entity_group', 'count']
                    col1, col2 = st.columns(2)
                    with col1:
                        st.subheader("Pie Chart", divider="rainbow")
                        fig1 = px.pie(value_counts, values='count', names='entity_group',
                                      hover_data=['count'], labels={'count': 'count'},
                                      title='Percentage of Predicted Labels')
                        fig1.update_traces(textposition='inside', textinfo='percent+label')
                        st.plotly_chart(fig1, use_container_width=True)
                        if comet_initialized and experiment: 
                            experiment.log_figure(figure=fig1, figure_name="label_pie_chart")
                    with col2:
                        st.subheader("Bar Chart", divider="rainbow")
                        fig2 = px.bar(value_counts, x="count", y="entity_group", color="entity_group",
                                      text_auto=True, title='Occurrences of Predicted Labels')
                        st.plotly_chart(fig2, use_container_width=True)
                        if comet_initialized and experiment: 
                            experiment.log_figure(figure=fig2, figure_name="label_bar_chart")
                else:
                    st.warning("No entities were extracted from the provided text.")


                dfa = pd.DataFrame(
                data={
                    'Column Name': ['word', 'entity_group','score', 'start', 'end'],
                    'Description': [
                        'entity extracted from your text data',
                        'label (tag) assigned to a given extracted entity',
                        'accuracy score; how accurately a tag has been assigned to a given entity',
                        'index of the start of the corresponding entity',
                        'index of the end of the corresponding entity',]}
                )

                                                

               
                buf = io.BytesIO()
                with zipfile.ZipFile(buf, "w") as myzip:
                    if not df.empty:
                        myzip.writestr("Summary_of_results.csv", df.to_csv(index=False))
                    myzip.writestr("Glossary_of_tags.csv", dfa.to_csv(index=False))
                with stylable_container( 
                     key="download_button", 
                     css_styles="""button { background-color: yellow; border: 1px solid black; padding: 5px; color: black; }""", 
                 ):
                    st.download_button( 
                         label="Download zip file", 
                         data=buf.getvalue(), 
                         file_name="nlpblogs_ner_results.zip", 
                         mime="application/zip",)
                                    
                st.divider()        
        else:
            st.warning("No meaningful text found to process. Please enter a URL or text.")
        
    except Exception as e:
        st.error(f"An unexpected error occurred: {e}")
    finally:
        if comet_initialized and experiment:
            experiment.end()
    
    end_time = time.time() # End timer here
    elapsed_time = end_time - start_time
    st.info(f"Results processed in **{elapsed_time:.2f} seconds**.") # Display elapsed time

st.write(f"Number of times you requested results: **{st.session_state['source_type_attempts']}/{max_attempts}**")