mtalec commited on
Commit
06f7039
·
1 Parent(s): 38b4c24
Files changed (2) hide show
  1. app.py +5 -1
  2. prompts.yaml +18 -9
app.py CHANGED
@@ -4,6 +4,9 @@ from tools.need_to_destination import NeedToDestinationTool
4
  from tools.weather_tool import WeatherTool
5
  from tools.find_flight import FlightsFinderTool
6
  from tools.final_answer import FinalAnswerTool
 
 
 
7
  from Gradio_UI import GradioUI
8
  import yaml
9
 
@@ -26,7 +29,8 @@ agent = CodeAgent(
26
  NeedToDestinationTool(), # Step 2: Need → Destination
27
  WeatherTool(), # Step 3: Weather for destination
28
  FlightsFinderTool(), # Step 4: Destination → Flights # Step 5: Claude wrap
29
- FinalAnswerTool() # Required final output
 
30
  ],
31
  max_steps=6,
32
  verbosity_level=1,
 
4
  from tools.weather_tool import WeatherTool
5
  from tools.find_flight import FlightsFinderTool
6
  from tools.final_answer import FinalAnswerTool
7
+ from tools.country_info_tool import CountryInfoTool
8
+ from smolagents import CodeAgent,DuckDuckGoSearchTool, HfApiModel,load_tool,tool
9
+ from smolagents import MultiStepAgent, ActionStep, AgentText, AgentImage, AgentAudio, handle_agent_output_types
10
  from Gradio_UI import GradioUI
11
  import yaml
12
 
 
29
  NeedToDestinationTool(), # Step 2: Need → Destination
30
  WeatherTool(), # Step 3: Weather for destination
31
  FlightsFinderTool(), # Step 4: Destination → Flights # Step 5: Claude wrap
32
+ FinalAnswerTool(), # Required final output
33
+ CountryInfoTool() # Step 6: Country info
34
  ],
35
  max_steps=6,
36
  verbosity_level=1,
prompts.yaml CHANGED
@@ -3,15 +3,16 @@ system_prompt: |-
3
  You operate in an autonomous, multi-step thinking loop using Thought → Code → Observation.
4
 
5
  Your job is to:
6
- - Reflect on the user’s mood
7
- - Infer their emotional need
8
- - Suggest a travel destination with a matching activity
9
- - Check the weather
10
- - Decide whether the weather suits the emotional need
11
- - If not, suggest another destination
12
- - Once happy, find flights from the origin
13
- - Wrap everything into an inspirational message
14
- - Optionally, add a quote based on the mood
 
15
 
16
  You must solve the full task by reasoning, calling tools or managed agents if needed, and writing Python code in the Code block.
17
 
@@ -92,6 +93,14 @@ planning:
92
  8. Call final_answer() with all outputs.
93
  <end_plan>
94
 
 
 
 
 
 
 
 
 
95
 
96
  update_facts_pre_messages: |-
97
  ### 1. Facts given in the task
 
3
  You operate in an autonomous, multi-step thinking loop using Thought → Code → Observation.
4
 
5
  Your job is to:
6
+ - Reflect on the user’s mood
7
+ - Infer their emotional need
8
+ - Suggest a travel destination with a matching activity
9
+ - Check the weather
10
+ - Retrieve relevant country information
11
+ - Decide whether the weather and country conditions suit the emotional need
12
+ - If not, suggest another destination
13
+ - Once happy, find flights from the origin
14
+ - Wrap everything into an inspirational message
15
+ - Optionally, add a quote based on the mood
16
 
17
  You must solve the full task by reasoning, calling tools or managed agents if needed, and writing Python code in the Code block.
18
 
 
93
  8. Call final_answer() with all outputs.
94
  <end_plan>
95
 
96
+ evaluate_destination_weather_and_country:
97
+ system: |-
98
+ You are a travel advisor who evaluates whether the destination is suitable for the user based on the weather and country information. Consider the weather forecast, the suggested activity, and relevant country details (e.g., safety, accessibility, cultural factors).
99
+ prompt: |-
100
+ The destination is {city}, {country}, and the suggested activity is: {activity}.
101
+ The weather forecast is: {weather}.
102
+ Relevant country information: {country_info}.
103
+ Based on this information, is this destination a good idea for the activity? Answer with "Yes" or "No" and provide a short explanation.
104
 
105
  update_facts_pre_messages: |-
106
  ### 1. Facts given in the task