Spaces:
Runtime error
Runtime error
# gradio_UI.py | |
import os | |
import re | |
import mimetypes | |
import shutil | |
from typing import Optional | |
import gradio as gr | |
from smolagents.agent_types import AgentText, AgentImage, AgentAudio, handle_agent_output_types | |
from smolagents.agents import ActionStep, MultiStepAgent | |
from smolagents.memory import MemoryStep | |
from smolagents.utils import _is_package_available | |
def pull_messages_from_step(step_log: MemoryStep): | |
if isinstance(step_log, ActionStep): | |
step_number = f"Step {step_log.step_number}" if step_log.step_number is not None else "" | |
yield gr.ChatMessage(role="assistant", content=f"**{step_number}**") | |
if hasattr(step_log, "model_output") and step_log.model_output is not None: | |
model_output = re.sub(r"```.?\s*<end_code>", "```", step_log.model_output.strip()) | |
yield gr.ChatMessage(role="assistant", content=model_output) | |
if hasattr(step_log, "tool_calls") and step_log.tool_calls: | |
tool_call = step_log.tool_calls[0] | |
content = str(tool_call.arguments.get("answer", tool_call.arguments)) if isinstance(tool_call.arguments, dict) else str(tool_call.arguments) | |
if tool_call.name == "python_interpreter": | |
content = f"```python\n{re.sub(r'<end_code>', '', content).strip()}\n```" | |
tool_msg = gr.ChatMessage( | |
role="assistant", | |
content=content, | |
metadata={"title": f"π οΈ Used tool {tool_call.name}", "id": "tool_call", "status": "pending"}, | |
) | |
yield tool_msg | |
if step_log.observations: | |
yield gr.ChatMessage(role="assistant", content=step_log.observations.strip(), metadata={"title": "π Execution Logs", "parent_id": "tool_call", "status": "done"}) | |
if step_log.error: | |
yield gr.ChatMessage(role="assistant", content=str(step_log.error), metadata={"title": "π₯ Error", "parent_id": "tool_call", "status": "done"}) | |
tool_msg.metadata["status"] = "done" | |
elif step_log.error: | |
yield gr.ChatMessage(role="assistant", content=str(step_log.error), metadata={"title": "π₯ Error"}) | |
meta = f"<span style='color:#bbb;font-size:12px;'>Input tokens: {getattr(step_log, 'input_token_count', 0)} | Output tokens: {getattr(step_log, 'output_token_count', 0)} | Duration: {round(getattr(step_log, 'duration', 0), 2)}</span>" | |
yield gr.ChatMessage(role="assistant", content=meta) | |
yield gr.ChatMessage(role="assistant", content="-----") | |
def stream_to_gradio(agent, task: str, reset_agent_memory: bool = False, additional_args: Optional[dict] = None): | |
total_input_tokens = 0 | |
total_output_tokens = 0 | |
for step_log in agent.run(task, stream=True, reset=reset_agent_memory, additional_args=additional_args): | |
if hasattr(agent.model, "last_input_token_count"): | |
total_input_tokens += agent.model.last_input_token_count | |
total_output_tokens += agent.model.last_output_token_count | |
if isinstance(step_log, ActionStep): | |
step_log.input_token_count = agent.model.last_input_token_count | |
step_log.output_token_count = agent.model.last_output_token_count | |
for message in pull_messages_from_step(step_log): | |
yield message | |
final_answer = handle_agent_output_types(step_log) | |
if isinstance(final_answer, AgentText): | |
yield gr.ChatMessage(role="assistant", content=f"**Final answer:**\n{final_answer.to_string()}") | |
elif isinstance(final_answer, AgentImage): | |
yield gr.ChatMessage(role="assistant", content={"path": final_answer.to_string(), "mime_type": "image/png"}) | |
elif isinstance(final_answer, AgentAudio): | |
yield gr.ChatMessage(role="assistant", content={"path": final_answer.to_string(), "mime_type": "audio/wav"}) | |
else: | |
yield gr.ChatMessage(role="assistant", content=f"**Final answer:** {str(final_answer)}") | |
class GradioUI: | |
def __init__(self, agent: MultiStepAgent): | |
if not _is_package_available("gradio"): | |
raise ModuleNotFoundError("Please install 'gradio' with: pip install 'smolagents[gradio]'") | |
self.agent = agent | |
def interact_with_agent(self, prompt, messages): | |
messages.append(gr.ChatMessage(role="user", content=prompt)) | |
yield messages | |
for msg in stream_to_gradio(self.agent, task=prompt): | |
messages.append(msg) | |
yield messages | |
yield messages | |
# def launch(self): | |
# with gr.Blocks(fill_height=True) as demo: | |
# stored_messages = gr.State([]) | |
# chatbot = gr.Chatbot(label="π Mood-Based Travel Agent", type="messages") | |
# user_input = gr.Textbox(lines=1, label="Describe your mood") | |
# user_input.submit( | |
# lambda text, hist: (hist + [gr.ChatMessage(role="user", content=text)], ""), | |
# [user_input, stored_messages], | |
# [stored_messages, user_input], | |
# ).then(self.interact_with_agent, [user_input, stored_messages], [chatbot]) | |
# demo.launch(debug=True, share=True) | |
def launch(self): | |
def run_agent_interface(prompt): | |
messages = [] | |
for msg in stream_to_gradio(self.agent, task=prompt): | |
messages.append(msg) | |
return "\n".join([m.content if isinstance(m.content, str) else str(m.content) for m in messages]) | |
demo = gr.Interface( | |
fn=run_agent_interface, | |
inputs=gr.Textbox( | |
label="Describe your mood", | |
placeholder="e.g., I need a lemon-scented reset by the sea...", | |
lines=1 | |
), | |
outputs=gr.Textbox(label="Response"), | |
title="Mood-Based Travel Agent", | |
description="Plan your perfect Mediterranean escape, one mood at a time.", | |
theme="default", | |
api_name="predict" | |
) | |
demo.launch(debug=True, share=True) | |
__all__ = ["GradioUI", "stream_to_gradio"] |