Update src/streamlit_app.py
Browse files- src/streamlit_app.py +10 -10
src/streamlit_app.py
CHANGED
@@ -112,22 +112,22 @@ if st.button("Analyze"):
|
|
112 |
st.write("Exists:", os.path.exists(audio_path))
|
113 |
# pass
|
114 |
|
115 |
-
with st.spinner("Transcribing with Whisper..."):
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
# transcription = "Hello There"
|
120 |
# pass
|
121 |
|
122 |
with st.spinner("Classifying accent..."):
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
|
127 |
# audio_df = split_audio(audio_path)
|
128 |
# print(np.concatenate(audio_df["audio"][:50].to_list()))
|
129 |
|
130 |
-
accent_data = {"label": "us", "score": 0.9}
|
131 |
accent = accent_data.get("label", "American")
|
132 |
confidence = accent_data.get("score", 0.0)
|
133 |
# pass
|
@@ -135,8 +135,8 @@ if st.button("Analyze"):
|
|
135 |
st.success("Analysis Complete!")
|
136 |
st.markdown(f"**Accent:** {accent}")
|
137 |
st.markdown(f"**Confidence Score:** {confidence:.2f}%")
|
138 |
-
st.markdown("**Transcription:**")
|
139 |
-
st.text_area("Transcript", transcription, height=200)
|
140 |
|
141 |
# Cleanup
|
142 |
os.remove(video_path)
|
|
|
112 |
st.write("Exists:", os.path.exists(audio_path))
|
113 |
# pass
|
114 |
|
115 |
+
# with st.spinner("Transcribing with Whisper..."):
|
116 |
+
# whisper_model = whisper.load_model("base")
|
117 |
+
# result = whisper_model.transcribe(audio_path)
|
118 |
+
# transcription = result['text']
|
119 |
# transcription = "Hello There"
|
120 |
# pass
|
121 |
|
122 |
with st.spinner("Classifying accent..."):
|
123 |
+
model_name = "dima806/english_accents_classification"
|
124 |
+
pipe = pipeline('audio-classification', model=model_name, device=-1) # GPU (device=0) or CPU (device=-1)
|
125 |
+
accent_data = accent_classify(pipe, audio_path)
|
126 |
|
127 |
# audio_df = split_audio(audio_path)
|
128 |
# print(np.concatenate(audio_df["audio"][:50].to_list()))
|
129 |
|
130 |
+
# accent_data = {"label": "us", "score": 0.9}
|
131 |
accent = accent_data.get("label", "American")
|
132 |
confidence = accent_data.get("score", 0.0)
|
133 |
# pass
|
|
|
135 |
st.success("Analysis Complete!")
|
136 |
st.markdown(f"**Accent:** {accent}")
|
137 |
st.markdown(f"**Confidence Score:** {confidence:.2f}%")
|
138 |
+
# st.markdown("**Transcription:**")
|
139 |
+
# st.text_area("Transcript", transcription, height=200)
|
140 |
|
141 |
# Cleanup
|
142 |
os.remove(video_path)
|