7H4M3R commited on
Commit
2dd9c4b
·
verified ·
1 Parent(s): 424f75b

Update src/streamlit_app.py

Browse files
Files changed (1) hide show
  1. src/streamlit_app.py +15 -14
src/streamlit_app.py CHANGED
@@ -129,26 +129,27 @@ if st.button("Analyze"):
129
  st.write("Audio saved at:", audio_path)
130
  st.write("Exists:", os.path.exists(audio_path))
131
 
132
- with st.spinner("Transcribing with Whisper..."):
133
- whisper_model = whisper.load_model("base")
134
- result = whisper_model.transcribe(audio_path)
135
- transcription = result['text']
136
- transcription = "Hello There"
137
- pass
138
 
139
  with st.spinner("Classifying accent..."):
140
- # model_name = "dima806/english_accents_classification"
141
- # pipe = pipeline('audio-classification', model=model_name, device=-1) # GPU (device=0) or CPU (device=-1)
142
- # accent_data = accent_classify(pipe, audio_path)
143
- audio_df = split_audio(audio_path)
144
  waves = f"{np.concatenate(audio_df["audio"][:5].to_list())}"
145
  st.markdown("**Audio waves:**")
146
  st.text_area("Audio waves", waves, height=200)
147
-
 
 
 
 
148
  # audio_df = split_audio(audio_path)
149
  # print(np.concatenate(audio_df["audio"][:50].to_list()))
150
 
151
- accent_data = {"label": "American", "score": 0.9}
152
  accent = accent_data.get("label", "American")
153
  confidence = accent_data.get("score", 0.0)
154
  # pass
@@ -156,8 +157,8 @@ if st.button("Analyze"):
156
  st.success("Analysis Complete!")
157
  st.markdown(f"**Accent:** {accent}")
158
  st.markdown(f"**Confidence Score:** {confidence:.2f}%")
159
- st.markdown("**Transcription:**")
160
- st.text_area("Transcript", transcription, height=200)
161
 
162
  # Cleanup
163
  os.remove(video_path)
 
129
  st.write("Audio saved at:", audio_path)
130
  st.write("Exists:", os.path.exists(audio_path))
131
 
132
+ # with st.spinner("Transcribing with Whisper..."):
133
+ # whisper_model = whisper.load_model("base")
134
+ # result = whisper_model.transcribe(audio_path)
135
+ # transcription = result['text']
136
+ # transcription = "Hello There"
137
+ # pass
138
 
139
  with st.spinner("Classifying accent..."):
140
+
 
 
 
141
  waves = f"{np.concatenate(audio_df["audio"][:5].to_list())}"
142
  st.markdown("**Audio waves:**")
143
  st.text_area("Audio waves", waves, height=200)
144
+
145
+ model_name = "dima806/english_accents_classification"
146
+ pipe = pipeline('audio-classification', model=model_name, device=0) # GPU (device=0) or CPU (device=-1)
147
+ accent_data = accent_classify(pipe, audio_path)
148
+ audio_df = split_audio(audio_path)
149
  # audio_df = split_audio(audio_path)
150
  # print(np.concatenate(audio_df["audio"][:50].to_list()))
151
 
152
+ # accent_data = {"label": "American", "score": 0.9}
153
  accent = accent_data.get("label", "American")
154
  confidence = accent_data.get("score", 0.0)
155
  # pass
 
157
  st.success("Analysis Complete!")
158
  st.markdown(f"**Accent:** {accent}")
159
  st.markdown(f"**Confidence Score:** {confidence:.2f}%")
160
+ # st.markdown("**Transcription:**")
161
+ # st.text_area("Transcript", transcription, height=200)
162
 
163
  # Cleanup
164
  os.remove(video_path)