# import os # import langchain # import langchain_huggingface # from langchain_huggingface import HuggingFaceEndpoint,HuggingFacePipeline, ChatHuggingFace # from langchain_core.messages import HumanMessage, SystemMessage, AIMessage # os.environ["HF_TOKEN"]=os.getenv('Ayush') # os.environ["HUGGINGFACEHUB_API_KEY"]=os.getenv('Ayush') # llama_model = HuggingFaceEndpoint(repo_id= "meta-llama/Llama-3.2-3B-Instruct",provider= "nebius",temperature=0.6, max_new_tokens=70,task="conversational") # model_d=ChatHuggingFace(llm =llama_model,repo_id= "meta-llama/Llama-3.2-3B-Instruct",provider= "nebius",temperature=0.6, max_new_tokens=70,task="conversational") # message = [SystemMessage(content = "Answer like you are a hardcore pc gamer"), # HumanMessage(content = "Give me name of top 10 pc games of all time with description")] # result = model_d.invoke(message) # print(result.content) import streamlit as st from langchain_community.chat_models import ChatHuggingFace from langchain_community.llms import HuggingFaceHub from langchain_core.messages import HumanMessage, SystemMessage # Setup API key (replace with your key or use st.secrets) import os os.environ["HF_TOKEN"]=os.getenv('Ayush') os.environ["HUGGINGFACEHUB_API_KEY"]=os.getenv('Ayush') # Load model llm = HuggingFaceHub( repo_id="meta-llama/Llama-3.2-3B-Instruct", model_kwargs={"temperature": 0.6, "max_new_tokens": 100} ) chat_model = ChatHuggingFace(llm=llm) # Streamlit UI st.title("🧪 Simple LLaMA Chat Test") question = st.text_input("Ask a gaming-related question:", "Give me name of top 10 PC games of all time with description") if st.button("Ask"): messages = [ SystemMessage(content="Answer like you are a hardcore PC gamer"), HumanMessage(content=question) ] response = chat_model.invoke(messages) st.write("### Response:") st.write(response.content)