import torch import torchvision.transforms as T from tqdm import tqdm from time import sleep from model.metrics import calculate_metrics_l, calculate_metrics_l_with_mask from utils.utils_heatmap import get_keypoints_from_heatmap_batch_maxpool_l def train_one_epoch(epoch_index, training_loader, optimizer, loss_fn, model, device, dataset="SoccerNet"): model.train(True) running_loss = 0. samples = 0 with (tqdm(enumerate(training_loader), unit="batch", total=len(training_loader)) as tepoch): for i, data in tepoch: tepoch.set_description(f"Epoch {epoch_index}") if dataset != "SoccerNet": input, target, mask = data[0].to(device), data[1].to(device), data[2].to(device) transform = T.Resize((540, 960)) input = transform(input) optimizer.zero_grad() outputs = model(input) loss = loss_fn(outputs, target, mask.unsqueeze(-1).unsqueeze(-1)) else: input, target = data[0].to(device), data[1].to(device) optimizer.zero_grad() outputs = model(input) loss = loss_fn(outputs, target) loss.backward() optimizer.step() # Gather data and report running_loss += loss.item() samples += input.size()[0] tepoch.set_postfix(loss=running_loss / samples) sleep(0.1) avg_loss = running_loss / samples return avg_loss def validation_step(validation_loader, loss_fn, model, device, dataset="SoccerNet"): running_vloss = 0.0 acc, prec, rec, f1 = 0, 0, 0, 0 samples = 0 model.eval() with (torch.no_grad()): for i, vdata in tqdm(enumerate(validation_loader), total=len(validation_loader)): if dataset != "SoccerNet": input, target, mask = vdata[0].to(device), vdata[1].to(device), vdata[2].to(device) transform = T.Resize((540, 960)) input = transform(input) voutputs = model(input) vloss = loss_fn(voutputs, target, mask.unsqueeze(-1).unsqueeze(-1)) kp_gt = get_keypoints_from_heatmap_batch_maxpool_l(target[:,:-1,:,:], return_scores=True, max_keypoints=2) kp_pred = get_keypoints_from_heatmap_batch_maxpool_l(voutputs[:,:-1,:,:], return_scores=True, max_keypoints=2) metrics = calculate_metrics_l_with_mask(kp_gt, kp_pred, mask) else: input, target = vdata[0].to(device), vdata[1].to(device) voutputs = model(input) vloss = loss_fn(voutputs, target) kp_gt = get_keypoints_from_heatmap_batch_maxpool_l(target[:,:-1,:,:], return_scores=True, max_keypoints=2) kp_pred = get_keypoints_from_heatmap_batch_maxpool_l(voutputs[:,:-1,:,:], return_scores=True, max_keypoints=2) metrics = calculate_metrics_l(kp_gt, kp_pred) running_vloss += vloss samples += input.size()[0] acc += metrics[0] prec += metrics[1] rec += metrics[2] f1 += metrics[3] avg_vloss = running_vloss / samples avg_acc = acc / (i+1) avg_prec = prec / (i+1) avg_rec = rec / (i+1) avg_f1 = f1 / (i+1) return avg_vloss, avg_acc, avg_prec, avg_rec, avg_f1