|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
|
|
class MSELoss(nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.criterion = nn.MSELoss(reduction='none')
|
|
|
|
def forward(self, output, target, mask=None):
|
|
loss = self.criterion(output, target)
|
|
if mask is not None:
|
|
loss = (loss * mask).mean()
|
|
else:
|
|
loss = (loss).mean()
|
|
return loss
|
|
|
|
class KLDivLoss(nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.criterion = nn.KLDivLoss(reduction='batchmean')
|
|
|
|
def forward(self, output, target, mask=None):
|
|
if mask is not None:
|
|
output_masked = output * mask
|
|
target_masked = target * mask
|
|
loss = self.criterion(F.log_softmax(output_masked), target_masked)
|
|
else:
|
|
loss = self.criterion(F.log_softmax(output), target)
|
|
return loss
|
|
|
|
class HeatmapWeightingMSELoss(nn.Module):
|
|
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.criterion = nn.MSELoss(reduction='none')
|
|
|
|
def forward(self, output, target, mask=None):
|
|
"""Forward function."""
|
|
batch_size = output.size(0)
|
|
num_joints = output.size(1)
|
|
|
|
heatmaps_pred = output.reshape(
|
|
(batch_size, num_joints, -1)).split(1, 1)
|
|
heatmaps_gt = target.reshape((batch_size, num_joints, -1)).split(1, 1)
|
|
|
|
loss = 0.
|
|
|
|
for idx in range(num_joints):
|
|
heatmap_pred = heatmaps_pred[idx].squeeze(1)
|
|
heatmap_gt = heatmaps_gt[idx].squeeze(1)
|
|
"""
|
|
Set different weight generation functions.
|
|
weight = heatmap_gt + 1
|
|
weight = heatmap_gt * 2 + 1
|
|
weight = heatmap_gt * heatmap_gt + 1
|
|
weight = torch.exp(heatmap_gt + 1)
|
|
"""
|
|
|
|
if mask is not None:
|
|
|
|
weight = torch.exp(heatmap_gt * mask[:, idx] + 1)
|
|
loss += torch.mean(self.criterion(heatmap_pred * mask[:, idx],
|
|
heatmap_gt * mask[:, idx]) * weight)
|
|
else:
|
|
weight = heatmap_gt + 1
|
|
loss += torch.mean(self.criterion(heatmap_pred, heatmap_gt) * weight)
|
|
return loss / (num_joints+1)
|
|
|
|
|
|
class CombMSEAW(nn.Module):
|
|
def __init__(self, lambda1=1, lambda2=1, alpha=2.1, omega=14, epsilon=1, theta=0.5):
|
|
super().__init__()
|
|
|
|
self.lambda1 = lambda1
|
|
self.lambda2 = lambda2
|
|
self.criterion1 = nn.MSELoss(reduction='none')
|
|
self.alpha = alpha
|
|
self.omega = omega
|
|
self.epsilon = epsilon
|
|
self.theta = theta
|
|
|
|
|
|
def forward(self, pred, target, mask=None):
|
|
loss = 0
|
|
if mask is not None:
|
|
pred_masked, target_masked = pred * mask, target * mask
|
|
loss += self.lambda1 * self.criterion1(pred_masked, target_masked)
|
|
loss += self.lambda2 * self.adaptive_wing(pred_masked, target_masked)
|
|
else:
|
|
loss += self.lambda1 * self.criterion1(pred, target)
|
|
loss += self.lambda2 * self.adaptive_wing(pred, target)
|
|
return torch.mean(loss)
|
|
|
|
def adaptive_wing(self, pred, target):
|
|
delta = (target - pred).abs()
|
|
alpha_t = self.alpha - target
|
|
A = self.omega * (
|
|
1 / (1 + torch.pow(self.theta / self.epsilon,
|
|
alpha_t))) * alpha_t \
|
|
* (torch.pow(self.theta / self.epsilon,
|
|
self.alpha - target - 1)) * (1 / self.epsilon)
|
|
C = self.theta * A - self.omega * torch.log(
|
|
1 + torch.pow(self.theta / self.epsilon, alpha_t))
|
|
|
|
losses = torch.where(delta < self.theta,
|
|
self.omega * torch.log(
|
|
1 + torch.pow(delta / self.epsilon, alpha_t)),
|
|
A * delta - C)
|
|
return losses
|
|
|
|
|
|
|
|
class AdaptiveWingLoss(nn.Module):
|
|
def __init__(self, alpha=2.1, omega=14, epsilon=1, theta=0.5):
|
|
super().__init__()
|
|
|
|
self.alpha = alpha
|
|
self.omega = omega
|
|
self.epsilon = epsilon
|
|
self.theta = theta
|
|
|
|
def forward(self, pred, target, mask=None):
|
|
if mask is not None:
|
|
pred_masked, target_masked = pred * mask, target * mask
|
|
loss = self.adaptive_wing(pred_masked, target_masked)
|
|
else:
|
|
loss = self.adaptive_wing(pred, target)
|
|
return loss
|
|
|
|
def adaptive_wing(self, pred, target):
|
|
delta = (target - pred).abs()
|
|
alpha_t = self.alpha - target
|
|
A = self.omega * (
|
|
1 / (1 + torch.pow(self.theta / self.epsilon,
|
|
alpha_t))) * alpha_t \
|
|
* (torch.pow(self.theta / self.epsilon,
|
|
self.alpha - target - 1)) * (1 / self.epsilon)
|
|
C = self.theta * A - self.omega * torch.log(
|
|
1 + torch.pow(self.theta / self.epsilon, alpha_t))
|
|
|
|
losses = torch.where(delta < self.theta,
|
|
self.omega * torch.log(
|
|
1 + torch.pow(delta / self.epsilon, alpha_t)),
|
|
A * delta - C)
|
|
return torch.mean(losses)
|
|
|
|
class GaussianFocalLoss(nn.Module):
|
|
"""GaussianFocalLoss is a variant of focal loss.
|
|
More details can be found in the `paper
|
|
<https://arxiv.org/abs/1808.01244>`_
|
|
Code is modified from `kp_utils.py
|
|
<https://github.com/princeton-vl/CornerNet/blob/master/models/py_utils/kp_utils.py#L152>`_ # noqa: E501
|
|
Please notice that the target in GaussianFocalLoss is a gaussian heatmap,
|
|
not 0/1 binary target.
|
|
Args:
|
|
alpha (float): Power of prediction.
|
|
gamma (float): Power of target for negative samples.
|
|
reduction (str): Options are "none", "mean" and "sum".
|
|
loss_weight (float): Loss weight of current loss.
|
|
"""
|
|
|
|
def __init__(self,
|
|
alpha=2.0,
|
|
gamma=4.0,
|
|
reduction='mean',
|
|
loss_weight=1.0):
|
|
super(GaussianFocalLoss, self).__init__()
|
|
self.alpha = alpha
|
|
self.gamma = gamma
|
|
self.reduction = reduction
|
|
self.loss_weight = loss_weight
|
|
|
|
def forward(self,
|
|
pred,
|
|
target,
|
|
mask=None,
|
|
weight=None,
|
|
avg_factor=None,
|
|
reduction_override=None):
|
|
"""Forward function.
|
|
Args:
|
|
pred (torch.Tensor): The prediction.
|
|
target (torch.Tensor): The learning target of the prediction
|
|
in gaussian distribution.
|
|
weight (torch.Tensor, optional): The weight of loss for each
|
|
prediction. Defaults to None.
|
|
avg_factor (int, optional): Average factor that is used to average
|
|
the loss. Defaults to None.
|
|
reduction_override (str, optional): The reduction method used to
|
|
override the original reduction method of the loss.
|
|
Defaults to None.
|
|
"""
|
|
assert reduction_override in (None, 'none', 'mean', 'sum')
|
|
reduction = (reduction_override if reduction_override else self.reduction)
|
|
if mask is not None:
|
|
pred_masked, target_masked = pred * mask, target * mask
|
|
loss_reg = self.loss_weight * self.gaussian_focal_loss(pred_masked, target_masked, alpha=self.alpha,
|
|
gamma=self.gamma)
|
|
else:
|
|
loss_reg = self.loss_weight * self.gaussian_focal_loss(pred, target, alpha=self.alpha, gamma=self.gamma)
|
|
return loss_reg.mean()
|
|
|
|
def gaussian_focal_loss(self, pred, gaussian_target, alpha=2.0, gamma=4.0):
|
|
"""`Focal Loss <https://arxiv.org/abs/1708.02002>`_ for targets in gaussian
|
|
distribution.
|
|
Args:
|
|
pred (torch.Tensor): The prediction.
|
|
gaussian_target (torch.Tensor): The learning target of the prediction
|
|
in gaussian distribution.
|
|
alpha (float, optional): A balanced form for Focal Loss.
|
|
Defaults to 2.0.
|
|
gamma (float, optional): The gamma for calculating the modulating
|
|
factor. Defaults to 4.0.
|
|
"""
|
|
eps = 1e-12
|
|
pos_weights = gaussian_target.eq(1)
|
|
neg_weights = (1 - gaussian_target).pow(gamma)
|
|
pos_loss = -(pred + eps).log() * (1 - pred).pow(alpha) * pos_weights
|
|
neg_loss = -(1 - pred + eps).log() * pred.pow(alpha) * neg_weights
|
|
return pos_loss + neg_loss |