File size: 2,665 Bytes
3d1f2c9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
import torch
import torchvision.transforms as T
from tqdm import tqdm
from time import sleep
from utils.utils_heatmap import get_keypoints_from_heatmap_batch_maxpool
from model.metrics import calculate_metrics
def train_one_epoch(epoch_index, training_loader, optimizer, loss_fn, model, device):
model.train(True)
running_loss = 0.
samples = 0
transform = T.Resize((540, 960))
with (tqdm(enumerate(training_loader), unit="batch", total=len(training_loader)) as tepoch):
for i, data in tepoch:
tepoch.set_description(f"Epoch {epoch_index}")
input, target, mask = data[0].to(device), data[1].to(device), data[2].to(device)
input = input if input.size()[-1] == 960 else transform(input)
optimizer.zero_grad()
outputs = model(input)
loss = loss_fn(outputs, target) * mask.unsqueeze(-1).unsqueeze(-1)
loss = loss.mean()
loss.backward()
optimizer.step()
# Gather data and report
running_loss += loss.item()
samples += mask.size()[0]
tepoch.set_postfix(loss=running_loss / samples)
sleep(0.1)
avg_loss = running_loss / samples
return avg_loss
def validation_step(validation_loader, loss_fn, model, device):
running_vloss = 0.0
acc, prec, rec, f1 = 0, 0, 0, 0
samples = 0
transform = T.Resize((540, 960))
model.eval()
with torch.no_grad():
for i, vdata in tqdm(enumerate(validation_loader), total=len(validation_loader)):
input, target, mask = vdata[0].to(device), vdata[1].to(device), vdata[2].to(device)
input = input if input.size()[-1] == 960 else transform(input)
voutputs = model(input)
vloss = loss_fn(voutputs, target) * mask.unsqueeze(-1).unsqueeze(-1)
vloss = vloss.mean()
kp_gt = get_keypoints_from_heatmap_batch_maxpool(target[:,:-1,:,:], return_scores=True, max_keypoints=1)
kp_pred = get_keypoints_from_heatmap_batch_maxpool(voutputs[:,:-1,:,:], return_scores=True, max_keypoints=1)
metrics = calculate_metrics(kp_gt, kp_pred, mask)
running_vloss += vloss
samples += mask.size()[0]
acc += metrics[0]
prec += metrics[1]
rec += metrics[2]
f1 += metrics[3]
avg_vloss = running_vloss / samples
avg_acc = acc / (i+1)
avg_prec = prec / (i+1)
avg_rec = rec / (i+1)
avg_f1 = f1 / (i+1)
return avg_vloss, avg_acc, avg_prec, avg_rec, avg_f1
|