File size: 34,642 Bytes
3d1f2c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
import sys
import cv2
import copy
import itertools
import numpy as np
# import matplotlib.pyplot as plt
# from mpl_toolkits.mplot3d import Axes3D

# from itertools import chain
from scipy.optimize import least_squares

# from utils_optimize import vector_to_mtx,  point_to_line_distance, get_opt_vector, line_plane_intersection, \
#                                     plane_from_P, plane_from_H
from utils.utils_optimize import vector_to_mtx,  point_to_line_distance, get_opt_vector, line_plane_intersection, \
                                    plane_from_P, plane_from_H


keypoint_world_coords_2D = [[0., 0.], [52.5, 0.], [105., 0.], [0., 13.84], [16.5, 13.84], [88.5, 13.84], [105., 13.84],
                            [0., 24.84], [5.5, 24.84], [99.5, 24.84], [105., 24.84], [0., 30.34], [0., 30.34],
                            [105., 30.34], [105., 30.34], [0., 37.66], [0., 37.66], [105., 37.66], [105., 37.66],
                            [0., 43.16], [5.5, 43.16], [99.5, 43.16], [105., 43.16], [0., 54.16], [16.5, 54.16],
                            [88.5, 54.16], [105., 54.16], [0., 68.], [52.5, 68.], [105., 68.], [16.5, 26.68],
                            [52.5, 24.85], [88.5, 26.68], [16.5, 41.31], [52.5, 43.15], [88.5, 41.31], [19.99, 32.29],
                            [43.68, 31.53], [61.31, 31.53], [85., 32.29], [19.99, 35.7], [43.68, 36.46], [61.31, 36.46],
                            [85., 35.7], [11., 34.], [16.5, 34.], [20.15, 34.], [46.03, 27.53], [58.97, 27.53],
                            [43.35, 34.], [52.5, 34.], [61.5, 34.], [46.03, 40.47], [58.97, 40.47], [84.85, 34.],
                            [88.5, 34.], [94., 34.]]  # 57

keypoint_aux_world_coords_2D = [[5.5, 0], [16.5, 0], [88.5, 0], [99.5, 0], [5.5, 13.84], [99.5, 13.84], [16.5, 24.84],
                                [88.5, 24.84], [16.5, 43.16], [88.5, 43.16], [5.5, 54.16], [99.5, 54.16], [5.5, 68],
                                [16.5, 68], [88.5, 68], [99.5, 68]]

line_world_coords_3D = [[[0., 54.16, 0.], [16.5, 54.16, 0.]], [[16.5, 13.84, 0.], [16.5, 54.16, 0.]],
                [[16.5, 13.84, 0.], [0., 13.84, 0.]], [[88.5, 54.16, 0.], [105., 54.16, 0.]],
                [[88.5, 13.84, 0.], [88.5, 54.16, 0.]], [[88.5, 13.84, 0.], [105., 13.84, 0.]],
                [[0., 37.66, -2.44], [0., 30.34, -2.44]], [[0., 37.66, 0.], [0., 37.66, -2.44]],
                [[0., 30.34, 0.], [0., 30.34, -2.44]], [[105., 37.66, -2.44], [105., 30.34, -2.44]],
                [[105., 30.34, 0.], [105., 30.34, -2.44]], [[105., 37.66, 0.], [105., 37.66, -2.44]],
                [[52.5, 0., 0.], [52.5, 68, 0.]], [[0., 68., 0.], [105., 68., 0.]], [[0., 0., 0.], [0., 68., 0.]],
                [[105., 0., 0.], [105., 68., 0.]], [[0., 0., 0.], [105., 0., 0.]], [[0., 43.16, 0.], [5.5, 43.16, 0.]],
                [[5.5, 43.16, 0.], [5.5, 24.84, 0.]], [[5.5, 24.84, 0.], [0., 24.84, 0.]],
                [[99.5, 43.16, 0.], [105., 43.16, 0.]], [[99.5, 43.16, 0.], [99.5, 24.84, 0.]],
                [[99.5, 24.84, 0.], [105., 24.84, 0.]]]

keypoint_world_coords_2D = [[x - 52.5, y - 34] for x, y in keypoint_world_coords_2D]
keypoint_aux_world_coords_2D = [[x - 52.5, y - 34] for x, y in keypoint_aux_world_coords_2D]
line_world_coords_3D = [[[x1 - 52.5, y1 - 34, z1], [x2 - 52.5, y2 - 34, z2]] for [[x1, y1, z1], [x2,y2,z2]] in line_world_coords_3D]

def rotation_matrix_to_pan_tilt_roll(rotation):
    """

    Decomposes the rotation matrix into pan, tilt and roll angles. There are two solutions, but as we know that cameramen

    try to minimize roll, we take the solution with the smallest roll.

    :param rotation: rotation matrix

    :return: pan, tilt and roll in radians

    """
    orientation = np.transpose(rotation)
    first_tilt = np.arccos(orientation[2, 2])
    second_tilt = - first_tilt

    sign_first_tilt = 1. if np.sin(first_tilt) > 0. else -1.
    sign_second_tilt = 1. if np.sin(second_tilt) > 0. else -1.

    first_pan = np.arctan2(sign_first_tilt * orientation[0, 2], sign_first_tilt * - orientation[1, 2])
    second_pan = np.arctan2(sign_second_tilt * orientation[0, 2], sign_second_tilt * - orientation[1, 2])
    first_roll = np.arctan2(sign_first_tilt * orientation[2, 0], sign_first_tilt * orientation[2, 1])
    second_roll = np.arctan2(sign_second_tilt * orientation[2, 0], sign_second_tilt * orientation[2, 1])

    # print(f"first solution {first_pan*180./np.pi}, {first_tilt*180./np.pi}, {first_roll*180./np.pi}")
    # print(f"second solution {second_pan*180./np.pi}, {second_tilt*180./np.pi}, {second_roll*180./np.pi}")
    if np.fabs(first_roll) < np.fabs(second_roll):
        return first_pan, first_tilt, first_roll
    return second_pan, second_tilt, second_roll


def pan_tilt_roll_to_orientation(pan, tilt, roll):
    """

    Conversion from euler angles to orientation matrix.

    :param pan:

    :param tilt:

    :param roll:

    :return: orientation matrix

    """
    Rpan = np.array([
        [np.cos(pan), -np.sin(pan), 0],
        [np.sin(pan), np.cos(pan), 0],
        [0, 0, 1]])
    Rroll = np.array([
        [np.cos(roll), -np.sin(roll), 0],
        [np.sin(roll), np.cos(roll), 0],
        [0, 0, 1]])
    Rtilt = np.array([
        [1, 0, 0],
        [0, np.cos(tilt), -np.sin(tilt)],
        [0, np.sin(tilt), np.cos(tilt)]])
    rotMat = np.dot(Rpan, np.dot(Rtilt, Rroll))
    return rotMat


class FramebyFrameCalib:
    def __init__(self, iwidth=960, iheight=540, denormalize=False):
        self.image_width = iwidth
        self.image_height = iheight
        self.denormalize = denormalize
        self.calibration = None
        self.principal_point = np.array([iwidth/2, iheight/2])
        self.position = None
        self.rotation = None
        self.homography = None

    def update(self, kp_dict, lines_dict):
        self.keypoints_dict = kp_dict
        self.lines_dict = lines_dict

        if self.denormalize:
            self.denormalize_keypoints()

        self.subsets = self.get_keypoints_subsets()

    def denormalize_keypoints(self):
        for kp in self.keypoints_dict.keys():
            self.keypoints_dict[kp]['x'] *= self.image_width
            self.keypoints_dict[kp]['y'] *= self.image_height
        for line in self.lines_dict.keys():
            self.lines_dict[line]['x_1'] *= self.image_width
            self.lines_dict[line]['y_1'] *= self.image_height
            self.lines_dict[line]['x_2'] *= self.image_width
            self.lines_dict[line]['y_2'] *= self.image_height

    def get_keypoints_subsets(self):
        full, main, ground_plane = {}, {}, {}

        for kp in self.keypoints_dict.keys():
            wp = keypoint_world_coords_2D[kp - 1] if kp <= 57 else keypoint_aux_world_coords_2D[kp - 1 - 57]

            full[kp] = {'xi': self.keypoints_dict[kp]['x'], 'yi': self.keypoints_dict[kp]['y'],
                        'xw': wp[0], 'yw': wp[1], 'zw': -2.44 if kp in [12, 15, 16, 19] else 0.}
            if kp <= 30:
                main[kp] = {'xi': self.keypoints_dict[kp]['x'], 'yi': self.keypoints_dict[kp]['y'],
                                      'xw': wp[0], 'yw': wp[1], 'zw': -2.44 if kp in [12, 15, 16, 19] else 0.}
            if kp not in [12, 15, 16, 19]:
                ground_plane[kp] = {'xi': self.keypoints_dict[kp]['x'], 'yi': self.keypoints_dict[kp]['y'],
                                      'xw': wp[0], 'yw': wp[1], 'zw': -2.44 if kp in [12, 15, 16, 19] else 0.}

        return {'full': full, 'main': main, 'ground_plane': ground_plane}

    def get_per_plane_correspondences(self, mode, use_ransac):
        self.obj_pts, self.img_pts, self.ord_pts = None, None, None

        if mode not in ['full', 'main', 'ground_plane']:
            sys.exit("Wrong mode. Select mode between 'full', 'main_keypoints', 'ground_plane'")

        world_points_p1, world_points_p2, world_points_p3 = [], [], []
        img_points_p1, img_points_p2, img_points_p3 = [], [], []
        keys_p1, keys_p2, keys_p3 = [], [], []

        keypoints = self.subsets[mode]
        for kp in keypoints.keys():
            if kp in [12, 16]:
                keys_p2.append(kp)
                world_points_p2.append([-keypoints[kp]['zw'], keypoints[kp]['yw'], 0.])
                img_points_p2.append([keypoints[kp]['xi'], keypoints[kp]['yi']])

            elif kp in [1, 4, 8, 13, 17, 20, 24, 28]:
                keys_p1.append(kp)
                keys_p2.append(kp)
                world_points_p1.append([keypoints[kp]['xw'], keypoints[kp]['yw'], keypoints[kp]['zw']])
                world_points_p2.append([-keypoints[kp]['zw'], keypoints[kp]['yw'], 0.])
                img_points_p1.append([keypoints[kp]['xi'], keypoints[kp]['yi']])
                img_points_p2.append([keypoints[kp]['xi'], keypoints[kp]['yi']])
            elif kp in [3, 7, 11, 14, 18, 23, 27, 30]:
                keys_p1.append(kp)
                keys_p3.append(kp)
                world_points_p1.append([keypoints[kp]['xw'], keypoints[kp]['yw'], keypoints[kp]['zw']])
                world_points_p3.append([-keypoints[kp]['zw'], keypoints[kp]['yw'], 0.])
                img_points_p1.append([keypoints[kp]['xi'], keypoints[kp]['yi']])
                img_points_p3.append([keypoints[kp]['xi'], keypoints[kp]['yi']])
            elif kp in [15, 19]:
                keys_p3.append(kp)
                world_points_p3.append([-keypoints[kp]['zw'], keypoints[kp]['yw'], 0.])
                img_points_p3.append([keypoints[kp]['xi'], keypoints[kp]['yi']])
            else:
                keys_p1.append(kp)
                world_points_p1.append([keypoints[kp]['xw'], keypoints[kp]['yw'], keypoints[kp]['zw']])
                img_points_p1.append([keypoints[kp]['xi'], keypoints[kp]['yi']])

        obj_points, img_points, key_points, ord_points = [], [], [], []

        if mode == 'ground_plane':
            obj_list = [world_points_p1]
            img_list = [img_points_p1]
            key_list = [keys_p1]
        else:
            obj_list = [world_points_p1, world_points_p2, world_points_p3]
            img_list = [img_points_p1, img_points_p2, img_points_p3]
            key_list = [keys_p1, keys_p2, keys_p3]

        if use_ransac > 0.:
            for i in range(len(obj_list)):
                if len(obj_list[i]) >= 4 and not all(item[0] == obj_list[i][0][0] for item in obj_list[i]) \
                        and not all(item[1] == obj_list[i][0][1] for item in obj_list[i]):
                    if i == 0:
                        h, status = cv2.findHomography(np.array(obj_list[i]), np.array(img_list[i]), cv2.RANSAC, use_ransac)
                        obj_list[i] = [obj for count, obj in enumerate(obj_list[i]) if status[count]==1]
                        img_list[i] = [obj for count, obj in enumerate(img_list[i]) if status[count]==1]
                        key_list[i] = [obj for count, obj in enumerate(key_list[i]) if status[count]==1]

        for i in range(len(obj_list)):
            if len(obj_list[i]) >= 4 and not all(item[0] == obj_list[i][0][0] for item in obj_list[i])\
                    and not all(item[1] == obj_list[i][0][1] for item in obj_list[i]):
                obj_points.append(np.array(obj_list[i], dtype=np.float32))
                img_points.append(np.array(img_list[i], dtype=np.float32))
                key_points.append(key_list[i])
                ord_points.append(i)

        self.obj_pts = obj_points
        self.img_pts = img_points
        self.key_pts = key_points
        self.ord_pts = ord_points

    def get_correspondences(self, mode):
        obj_pts, img_pts, prob_pts = [], [], []
        keypoints = list(set(list(itertools.chain(*self.key_pts))))
        for kp in keypoints:
            obj_pts.append([self.subsets[mode][kp]['xw'], self.subsets[mode][kp]['yw'], self.subsets[mode][kp]['zw']])
            img_pts.append([self.subsets[mode][kp]['xi'], self.subsets[mode][kp]['yi']])

        return np.array(obj_pts, dtype=np.float32), np.array(img_pts, dtype=np.float32)

    def change_plane_coords(self, w=105, h=68):
        R = np.array([[0,0,-1], [0,1,0], [1,0,0]])
        self.rotation = self.rotation @ R
        if self.ord_pts[0] == 1:
            self.position = np.linalg.inv(R) @ self.position + np.array([-w/2, 0, 0])
        elif self.ord_pts[0] == 2:
            self.position = np.linalg.inv(R) @ self.position + np.array([w/2, 0, 0])

    def reproj_err(self, obj_pts, img_pts):
        if self.calibration is not None:
            x_focal_length = self.calibration[0, 0]
            y_focal_length = self.calibration[1, 1]
            x_principal_point = self.calibration[0, 2]
            y_principal_point = self.calibration[1, 2]
            position_meters = self.position
            rotation = self.rotation

            It = np.eye(4)[:-1]
            It[:, -1] = -position_meters
            Q = np.array([[x_focal_length, 0, x_principal_point],
                          [0, y_focal_length, y_principal_point],
                          [0, 0, 1]])
            P = Q @ (rotation @ It)

            err, n = 0, 0
            for i in range(len(obj_pts)):
                proj_point = P @ np.array([obj_pts[i][0], obj_pts[i][1], obj_pts[i][2], 1.])
                proj_point /= proj_point[-1]
                err_point = (img_pts[i] - proj_point[:2])
                err += np.sum(err_point**2)
                n += 1

            return np.sqrt(err/n)
        else:
            return None

    def reproj_err_ground(self, obj_pts, img_pts):
        if self.homography is not None:
            err, n = 0, 0
            for i in range(len(obj_pts)):
                proj_point = self.homography @ np.array([obj_pts[i][0], obj_pts[i][1], 1.])
                proj_point /= proj_point[-1]
                err_point = (img_pts[i] - proj_point[:2])
                err += np.sum(err_point**2)
                n += 1

            return np.sqrt(err/n)
        else:
            return None

    def vector_to_params(self, vector):
        position = vector[:3]
        rot_vector = np.array(vector[3:])
        rotation, _ = cv2.Rodrigues(rot_vector)
        self.position = position
        self.rotation = rotation

    def projection_from_cam(self):
        It = np.eye(4)[:-1]
        It[:, -1] = -self.position
        P = self.calibration @ (self.rotation @ It)
        return P

    def lines_consensus(self, threshold=100):
        P = self.projection_from_cam()
        plane_normal, plane_point = plane_from_P(P, self.position, self.principal_point)

        self.lines_dict_cons = {}
        if plane_normal is not None:
            for key, value in self.lines_dict.items():
                y1, y2 = value['y_1'], value['y_2']
                x1, x2 = value['x_1'], value['x_2']

                wp1, wp2 = line_world_coords_3D[key - 1]
                p = line_plane_intersection(wp1, wp2, plane_normal, plane_point)
                if len(p) == 2:
                    proj1 = P @ np.array([p[0][0], p[0][1], p[0][2], 1.])
                    proj2 = P @ np.array([p[1][0], p[1][1], p[1][2], 1.])
                else:
                    proj1 = P @ np.array([wp1[0], wp1[1], wp1[2], 1.])
                    proj2 = P @ np.array([wp2[0], wp2[1], wp2[2], 1.])

                proj1 /= proj1[-1]
                proj2 /= proj2[-1]
                distance1 = point_to_line_distance(proj1, proj2, np.array([x1, y1]))
                distance2 = point_to_line_distance(proj1, proj2, np.array([x2, y2]))

                if distance2 <= threshold and distance1 <= threshold:
                    self.lines_dict_cons[key] = value

    def line_optimizer(self, vector, img_pts, obj_pts):
        P = vector_to_mtx(vector, self.calibration)
        if not any(np.isnan(P.flatten())):

            plane_normal, plane_point = plane_from_P(P, self.position, self.principal_point)

            points, proj_points = [], []
            for i in range(len(img_pts)):
                points.append(img_pts[i])
                proj_point = P @ np.array([obj_pts[i][0], obj_pts[i][1], obj_pts[i][2], 1.])
                scale = proj_point[-1]
                proj_point /= scale
                proj_points.append(proj_point[:2])

            err1 = (np.array(points) - np.array(proj_points)).ravel()

            err2 = []
            for key, value in self.lines_dict_cons.items():
                y1, y2 = value['y_1'], value['y_2']
                x1, x2 = value['x_1'], value['x_2']

                wp1, wp2 = line_world_coords_3D[key - 1]
                p = line_plane_intersection(wp1, wp2, plane_normal, plane_point)

                if len(p) == 2:
                    proj1 = P @ np.array([p[0][0], p[0][1], p[0][2], 1.])
                    proj2 = P @ np.array([p[1][0], p[1][1], p[1][2], 1.])
                else:
                    proj1 = P @ np.array([wp1[0], wp1[1], wp1[2], 1.])
                    proj2 = P @ np.array([wp2[0], wp2[1], wp2[2], 1.])

                proj1 /= proj1[-1]
                proj2 /= proj2[-1]
                distance1 = point_to_line_distance(proj1, proj2, np.array([x1, y1]))
                distance2 = point_to_line_distance(proj1, proj2, np.array([x2, y2]))
                err2.append([distance1, distance2])

            return np.concatenate((err1, np.array(err2).ravel()))

        else:
            err = []
            for i in range(len(img_pts)+len( self.lines_dict_cons)):
                err.append([np.inf, np.inf])
            return np.array(err).ravel()


    def get_cam_params(self, mode='full', use_ransac=0, refine=False, refine_w_lines=False):
        flags = cv2.CALIB_FIX_PRINCIPAL_POINT | cv2.CALIB_FIX_ASPECT_RATIO
        flags = flags | cv2.CALIB_FIX_TANGENT_DIST | \
                cv2.CALIB_FIX_S1_S2_S3_S4 | cv2.CALIB_FIX_TAUX_TAUY
        flags = flags | cv2.CALIB_FIX_K1 | cv2.CALIB_FIX_K2 | \
                cv2.CALIB_FIX_K3 | cv2.CALIB_FIX_K4 | cv2.CALIB_FIX_K5 | \
                cv2.CALIB_FIX_K6

        self.get_per_plane_correspondences(mode=mode, use_ransac=use_ransac)

        if len(self.obj_pts) == 0:
            return None, None


        obj_pts, img_pts = self.get_correspondences(mode)
        if len(obj_pts) < 6:
            ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(
                self.obj_pts,
                self.img_pts,
                (self.image_width, self.image_height),
                None,
                None,
                flags=flags,
            )

        else:
            mtx = cv2.initCameraMatrix2D(
                self.obj_pts,
                self.img_pts,
                (self.image_width, self.image_height),
                aspectRatio=1.0,
            )
            if not np.isnan(np.min(mtx)):
                flags2 = flags | cv2.CALIB_USE_INTRINSIC_GUESS

                ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(
                    [obj_pts],
                    [img_pts],
                    (self.image_width, self.image_height),
                    mtx,
                    None,
                    flags=flags2,
                )
            else:
                ret = False

        if ret:
            self.calibration = mtx
            self.principal_point = np.array([mtx[0, 2], mtx[1, 2]])
            R, _ = cv2.Rodrigues(rvecs[0])
            self.rotation = R
            self.position = (-np.transpose(self.rotation) @ tvecs[0]).T[0]

            if self.ord_pts[0] != 0:
                self.change_plane_coords()

            obj_pts, img_pts = self.get_correspondences(mode)
            rep_err = self.reproj_err(obj_pts, img_pts)

            if refine:
                if not np.isnan(rep_err):
                    rvec, _ = cv2.Rodrigues(self.rotation)
                    tvec = -self.rotation @ self.position

                    rvecs, tvecs = cv2.solvePnPRefineLM(obj_pts, img_pts, self.calibration, dist, rvec, tvec,
                                                  (cv2.TERM_CRITERIA_MAX_ITER + cv2.TERM_CRITERIA_EPS,
                                                   20000, 1e-5))

                    self.rotation, _ = cv2.Rodrigues(rvecs)
                    self.position = - np.transpose(self.rotation) @ tvecs
                    rep_err = self.reproj_err(obj_pts, img_pts)


            if refine_w_lines:
                if not np.isnan(rep_err):
                    self.lines_consensus()
                    vector = get_opt_vector(self.position, self.rotation)
                    res = least_squares(self.line_optimizer, vector, verbose=0, ftol=1e-4, x_scale="jac", method='trf',
                                         args=(img_pts, obj_pts))

                    vector_opt = res['x']
                    if not any(np.isnan(vector_opt)):
                        self.vector_to_params(vector_opt)
                        rep_err = self.reproj_err(obj_pts, img_pts)


            pan, tilt, roll = rotation_matrix_to_pan_tilt_roll(self.rotation)

            pan = np.rad2deg(pan)
            tilt = np.rad2deg(tilt)
            roll = np.rad2deg(roll)

            cam_params = {"pan_degrees": pan,
                          "tilt_degrees": tilt,
                          "roll_degrees": roll,
                          "x_focal_length": self.calibration[0,0],
                          "y_focal_length": self.calibration[1,1],
                          "principal_point": [self.principal_point[0], self.principal_point[1]],
                          "position_meters": [self.position[0], self.position[1], self.position[2]],
                          "rotation_matrix": [[self.rotation[0, 0], self.rotation[0, 1], self.rotation[0, 2]],
                                              [self.rotation[1, 0], self.rotation[1, 1], self.rotation[1, 2]],
                                              [self.rotation[2, 0], self.rotation[2, 1], self.rotation[2, 2]]],
                          "radial_distortion": [0., 0., 0., 0., 0., 0.],
                          "tangential_distortion": [0., 0.],
                          "thin_prism_distortion": [0., 0., 0., 0.]}

            return cam_params, rep_err
        else:
            return None, None


    def estimate_calibration_matrix_from_plane_homography(self, homography):
        """

        This method initializes the calibration matrix from the homography between the world plane of the pitch

        and the image. It is based on the extraction of the calibration matrix from the homography (Algorithm 8.2 of

        Multiple View Geometry in computer vision, p225). The extraction is sensitive to noise, which is why we keep the

        principal point in the middle of the image rather than using the one extracted by this method.

        :param homography: homography between the world plane of the pitch and the image

        """
        H = np.reshape(homography, (9,))
        A = np.zeros((5, 6))
        A[0, 1] = 1.
        A[1, 0] = 1.
        A[1, 2] = -1.
        A[2, 3] = self.principal_point[1] / self.principal_point[0]
        A[2, 4] = -1.0
        A[3, 0] = H[0] * H[1]
        A[3, 1] = H[0] * H[4] + H[1] * H[3]
        A[3, 2] = H[3] * H[4]
        A[3, 3] = H[0] * H[7] + H[1] * H[6]
        A[3, 4] = H[3] * H[7] + H[4] * H[6]
        A[3, 5] = H[6] * H[7]
        A[4, 0] = H[0] * H[0] - H[1] * H[1]
        A[4, 1] = 2 * H[0] * H[3] - 2 * H[1] * H[4]
        A[4, 2] = H[3] * H[3] - H[4] * H[4]
        A[4, 3] = 2 * H[0] * H[6] - 2 * H[1] * H[7]
        A[4, 4] = 2 * H[3] * H[6] - 2 * H[4] * H[7]
        A[4, 5] = H[6] * H[6] - H[7] * H[7]

        u, s, vh = np.linalg.svd(A)
        w = vh[-1]
        W = np.zeros((3, 3))
        W[0, 0] = w[0] / w[5]
        W[0, 1] = w[1] / w[5]
        W[0, 2] = w[3] / w[5]
        W[1, 0] = w[1] / w[5]
        W[1, 1] = w[2] / w[5]
        W[1, 2] = w[4] / w[5]
        W[2, 0] = w[3] / w[5]
        W[2, 1] = w[4] / w[5]
        W[2, 2] = w[5] / w[5]

        try:
            Ktinv = np.linalg.cholesky(W)
        except np.linalg.LinAlgError:
            K = np.eye(3)
            return False, K

        K = np.linalg.inv(np.transpose(Ktinv))
        K /= K[2, 2]

        self.xfocal_length = K[0, 0]
        self.yfocal_length = K[1, 1]
        # the principal point estimated by this method is very noisy, better keep it in the center of the image
        self.principal_point = (self.image_width / 2, self.image_height / 2)
        # self.principal_point = (K[0,2], K[1,2])
        self.calibration = np.array([
            [self.xfocal_length, 0, self.principal_point[0]],
            [0, self.yfocal_length, self.principal_point[1]],
            [0, 0, 1]
        ], dtype='float')
        return True, K


    def from_homography(self):
        """

        This method initializes the essential camera parameters from the homography between the world plane of the pitch

        and the image. It is based on the extraction of the calibration matrix from the homography (Algorithm 8.2 of

        Multiple View Geometry in computer vision, p225), then using the relation between the camera parameters and the

        same homography, we extract rough rotation and position estimates (Example 8.1 of Multiple View Geometry in

        computer vision, p196).

        :param homography: The homography that captures the transformation between the 3D flat model of the soccer pitch

         and its image.

        """
        success, _ = self.estimate_calibration_matrix_from_plane_homography(self.homography)
        if not success:
            return False

        hprim = np.linalg.inv(self.calibration) @ self.homography
        lambda1 = 1 / np.linalg.norm(hprim[:, 0])
        lambda2 = 1 / np.linalg.norm(hprim[:, 1])
        lambda3 = np.sqrt(lambda1 * lambda2)

        r0 = hprim[:, 0] * lambda1
        r1 = hprim[:, 1] * lambda2
        r2 = np.cross(r0, r1)

        R = np.column_stack((r0, r1, r2))
        u, s, vh = np.linalg.svd(R)
        R = u @ vh
        if np.linalg.det(R) < 0:
            u[:, 2] *= -1
            R = u @ vh
        self.rotation = R
        t = hprim[:, 2] * lambda3
        self.position = - np.transpose(R) @ t
        return True


    def lines_consensus_ground(self, threshold=100):
        H = self.homography
        plane_normal, plane_point = plane_from_H(H, self.position, self.principal_point)

        self.lines_dict_cons = {}
        if plane_normal is not None:
            for key, value in self.lines_dict.items():
                y1, y2 = value['y_1'], value['y_2']
                x1, x2 = value['x_1'], value['x_2']

                wp1, wp2 = line_world_coords_3D[key - 1]
                p = line_plane_intersection(wp1, wp2, plane_normal, plane_point)
                if len(p) == 2:
                    proj1 = H @ np.array([p[0][0], p[0][1], 1.])
                    proj2 = H @ np.array([p[1][0], p[1][1], 1.])
                else:
                    proj1 = H @ np.array([wp1[0], wp1[1], 1.])
                    proj2 = H @ np.array([wp2[0], wp2[1], 1.])

                proj1 /= proj1[-1]
                proj2 /= proj2[-1]
                distance1 = point_to_line_distance(proj1, proj2, np.array([x1, y1]))
                distance2 = point_to_line_distance(proj1, proj2, np.array([x2, y2]))

                if distance2 <= threshold and distance1 <= threshold:
                    self.lines_dict_cons[key] = value

    def line_optimizer_ground(self, vector, img_pts, obj_pts):
        H = np.append(vector, 1).reshape(3, 3)
        if not any(np.isnan(H.flatten())):

            plane_normal, plane_point = plane_from_H(H, self.position, self.principal_point)

            points, proj_points = [], []
            for i in range(len(img_pts)):
                # if pts[0][i] <= 57:
                points.append(img_pts[i])
                proj_point = H @ np.array([obj_pts[i][0], obj_pts[i][1], 1.])
                scale = proj_point[-1]
                proj_point /= scale
                proj_points.append(proj_point[:2])

            err1 = (np.array(points) - np.array(proj_points)).ravel()

            err2 = []
            for key, value in self.lines_dict_cons.items():
                y1, y2 = value['y_1'], value['y_2']
                x1, x2 = value['x_1'], value['x_2']

                wp1, wp2 = line_world_coords_3D[key - 1]
                p = line_plane_intersection(wp1, wp2, plane_normal, plane_point)

                if len(p) == 2:
                    proj1 = H @ np.array([p[0][0], p[0][1], 1.])
                    proj2 = H @ np.array([p[1][0], p[1][1], 1.])
                else:
                    proj1 = H @ np.array([wp1[0], wp1[1], 1.])
                    proj2 = H @ np.array([wp2[0], wp2[1], 1.])

                proj1 /= proj1[-1]
                proj2 /= proj2[-1]
                distance1 = point_to_line_distance(proj1, proj2, np.array([x1, y1]))
                distance2 = point_to_line_distance(proj1, proj2, np.array([x2, y2]))
                err2.append([distance1, distance2])

            return np.concatenate((0.01*err1, np.array(err2).ravel()))
        else:
            err = []
            for i in range(len(img_pts)+len( self.lines_dict_cons)):
                err.append([np.inf, np.inf])
            return np.array(err).ravel()


    def get_homography_from_ground_plane(self, use_ransac=5., inverse=False, refine_lines=False):
        self.get_per_plane_correspondences(mode='ground_plane', use_ransac=use_ransac)
        obj_pts, img_pts = self.get_correspondences('ground_plane')

        if len(obj_pts) >= 4:
            if use_ransac > 0:
               H, mask = cv2.findHomography(obj_pts, img_pts, cv2.RANSAC, use_ransac)
            else:
               H, mask = cv2.findHomography(obj_pts, img_pts)

            if H is not None:
                self.homography = H
                self.from_homography()
                rep_err = self.reproj_err_ground(obj_pts, img_pts)
                if self.position is not None:
                    if refine_lines:
                        self.lines_consensus_ground()
                        vector = H.flatten()[:-1]
                        res = least_squares(self.line_optimizer_ground, vector, verbose=0, ftol=1e-4, x_scale="jac",
                                            method='lm', args=(img_pts, obj_pts))
    
                        vector_opt = res['x']
                        if not any(np.isnan(vector_opt)):
                            H = np.append(vector_opt, 1).reshape(3, 3)
                            self.homography = H
                            rep_err = self.reproj_err_ground(obj_pts, img_pts)
                if inverse:
                    H_inv = np.linalg.inv(H)
                    return H_inv / H_inv[-1, -1], rep_err
                else:
                    return H, rep_err
            else:
                return None, None
        else:
            return None, None


    def heuristic_voting(self, refine=False, refine_lines=False, th=5.):
        final_results = []
        for mode in ['full', 'ground_plane', 'main']:
            for use_ransac in [0, 5, 10, 15, 25, 50]:
                cam_params, ret = self.get_cam_params(mode=mode, use_ransac=use_ransac,
                                                      refine=refine, refine_w_lines=refine_lines)
                if ret:
                    result_dict = {'mode': mode, 'use_ransac': use_ransac, 'rep_err': ret,
                                   'cam_params': cam_params, 'calib_plane': self.ord_pts[0]}
                    final_results.append(result_dict)

        if final_results:
            final_results.sort(key=lambda x: (x['rep_err'], x['mode']))
            for res in final_results:
                if res['mode'] == 'full' and res['use_ransac'] == 0 and res['rep_err'] <= th:
                    return res
            # Return the first element in the sorted list (if it's not empty)
            return final_results[0]
        else:
            return None

    def heuristic_voting_ground(self, refine_lines=False, th=5.):
        final_results = []
        for use_ransac in [0, 5, 10, 15, 25, 50]:
            H, ret = self.get_homography_from_ground_plane(use_ransac=use_ransac, inverse=True, refine_lines=refine_lines)
            if H is not None:
                result_dict = {'use_ransac': use_ransac, 'rep_err': ret, 'homography': H}
                final_results.append(result_dict)

        if final_results:
            final_results.sort(key=lambda x: (x['rep_err']))
            for res in final_results:
                if res['use_ransac'] == 0 and res['rep_err'] <= th:
                    return res
            # Return the first element in the sorted list (if it's not empty)
            return final_results[0]
        else:
            return None


# if __name__ == "__main__":
#     # Préparer les données pour l'affichage 2D
#     fig, ax = plt.subplots()

#     # Keypoints 2D
#     keypoint_world_coords_2D = [
#         [0., 0.], [52.5, 0.], [105., 0.], [0., 13.84], [16.5, 13.84], [88.5, 13.84], [105., 13.84],
#         [0., 24.84], [5.5, 24.84], [99.5, 24.84], [105., 24.84], [0., 30.34], [0., 30.34],
#         [105., 30.34], [105., 30.34], [0., 37.66], [0., 37.66], [105., 37.66], [105., 37.66],
#         [0., 43.16], [5.5, 43.16], [99.5, 43.16], [105., 43.16], [0., 54.16], [16.5, 54.16],
#         [88.5, 54.16], [105., 54.16], [0., 68.], [52.5, 68.], [105., 68.], [16.5, 26.68],
#         [52.5, 24.85], [88.5, 26.68], [16.5, 41.31], [52.5, 43.15], [88.5, 41.31],
#         [11., 34.], [16.5, 34.], [20.15, 34.],
#         [43.35, 34.], [52.5, 34.], [61.5, 34.], [84.85, 34.],
#         [88.5, 34.], [94., 34.]
#     ]

#     # Afficher les keypoints en 2D
#     for point in keypoint_world_coords_2D:
#         ax.scatter(point[0], point[1], color='green')

#     ax.set_xlabel('X')
#     ax.set_ylabel('Y')
#     ax.set_title('Keypoints 2D Visualization')
#     ax.set_aspect('equal', adjustable='box')
#     plt.grid(True)
#     plt.show()