File size: 17,945 Bytes
3d1f2c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
from utils.utils_keypoints import KeypointsDB
from utils.utils_lines import LineKeypointsDB
from utils.utils_calib import FramebyFrameCalib
from utils.utils_heatmap import complete_keypoints
from PIL import Image
import torch
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.lines import Line2D


cam3_line_dict = {
    
    "Big rect. right top": [
        {"x": 1342.8861505076343, "y": 1076.997434976179},
        {"x": 1484.7446330310781, "y": 906.3705391217808}
    ],
    "Big rect. right main": [
        {"x": 1484.7446330310781, "y": 906.3705391217808},
        {"x": 1049.6210183678218, "y": 748.0287797688992},
        {"x": 828.6491513601493, "y": 668.8579000924583},
        {"x": 349.8767728435256, "y": 500.9610345717304},
        {"x": 32.736572890025556, "y": 397.21988189225624}
    ],
    "Big rect. right bottom": [
        {"x": 32.736572890025556, "y": 397.21988189225624},
        {"x": 0.3753980224568448, "y": 407.0286292126068}
    ],
    "Small rect. right top": [
        {"x": 312.24913494809687, "y": 1075.6461846681693},
        {"x": 426.66666666666663, "y": 999.9279904137233}
    ],
    "Small rect. right main": [
        {"x": 426.66666666666663, "y": 999.9279904137233},
        {"x": 0, "y": 769.079837198949}
    ],
    "Circle right": [
        {"x": 828.6491513601493, "y": 668.8579000924583},
        {"x": 821.7759602949911, "y": 612.2830792373484},
        {"x": 782.8739995106773, "y": 564.5621490047902},
        {"x": 722.6387053930304, "y": 529.3993583071158},
        {"x": 623.5014504910696, "y": 503.02726528386006},
        {"x": 494.24654853028534, "y": 492.980753655953},
        {"x": 349.8767728435256, "y": 500.9610345717304}
    ],
    "Side line bottom": [
        {"x": 2.0193824656299317, "y": 266.2605192109321},
        {"x": 399.0443993689428, "y": 186.14824976426013},
        {"x": 645.5533017804819, "y": 132.93313314748357},
        {"x": 1001.1088573360372, "y": 53.39824942655338},
        {"x": 1208.1676808654488, "y": 7.351737798646435}
    ],
    "Middle line": [
        {"x": 645.5533017804819, "y": 132.93313314748357},
        {"x": 1106.0585089650835, "y": 200.22939899146556},
        {"x": 1580.7388158704541, "y": 269.8451725000601},
        {"x": 1917.6527118636336, "y": 318.9857185061268}
    ],
    "Circle central": [
        {"x": 1580.7388158704541, "y": 269.8451725000601},
        {"x": 1580.7388158704541, "y": 269.8451725000601},
        {"x": 1533.8366024891266, "y": 288.8643838246303},
        {"x": 1441.810458698277, "y": 302.46903498742097},
        {"x": 1316.3202626198458, "y": 304.5620582432349},
        {"x": 1219.0653606590615, "y": 292.0039187083512},
        {"x": 1135.4052299401073, "y": 274.2132210339326},
        {"x": 1069.522876998931, "y": 237.5853140571884},
        {"x": 1106.0585089650835, "y": 200.22939899146556},
        {"x": 1139.5882364760548, "y": 189.4457791734675},
        {"x": 1224.2941188289963, "y": 177.9341512664908},
        {"x": 1314.2287593518718, "y": 174.79461638276985},
        {"x": 1392.6601319008914, "y": 180.02717452230473},
        {"x": 1465.8627462799764, "y": 190.49229080137454},
        {"x": 1529.6535959531789, "y": 204.09694196416518},
        {"x": 1581.9411776525253, "y": 230.2597326618396},
        {"x": 1580.7388158704541, "y": 269.8451725000601}
    ],
    "Side line left": [
        {"x": 1208.1676808654488, "y": 7.351737798646435},
        {"x": 1401.9652021886754, "y": 20.565213248502545},
        {"x": 1582.3573590514204, "y": 30.37625976013045},
        {"x": 1679.416182580832, "y": 34.300678364781604},
        {"x": 1824.5142217965183, "y": 41.23091697692868},
        {"x": 1918.6318688553417, "y": 42.21202162809147}
    ],
    "Big rect. left bottom": [
        {"x": 1401.9652021886754, "y": 20.565213248502545},
        {"x": 1283.3377512082834, "y": 53.98527744204496}
    ],
    "Big rect. left main": [
        {"x": 1283.3377512082834, "y": 53.98527744204496},
        {"x": 1510.7887316004399, "y": 73.60737046530076},
        {"x": 1808.8279472867146, "y": 94.21056813971936},
        {"x": 1918.6318688553417, "y": 100.0971960466961}
    ],
    "Circle left": [
        {"x": 1510.7887316004399, "y": 73.60737046530076},
        {"x": 1548.0436335612244, "y": 86.36173093041702},
        {"x": 1620.5926531690673, "y": 95.19167279088215},
        {"x": 1681.3769668945574, "y": 97.15388209320773},
        {"x": 1746.0828492474989, "y": 100.0971960466961},
        {"x": 1808.8279472867146, "y": 94.21056813971936}
    ],
    "Small rect. left bottom": [
        {"x": 1550.9848100318127, "y": 42.21202162809147},
        {"x": 1582.3573590514204, "y": 30.37625976013045}
    ],
    "Small rect. left main": [
        {"x": 1550.9848100318127, "y": 42.21202162809147},
        {"x": 1918.418689198772, "y": 60.49417894940041}
    ]
}

def transform_data(line_dict, width, height):
    """

    Transform input line dictionary to normalized coordinates.

    

    Args:

        line_dict (dict): Dictionary containing line coordinates

        width (int): Image width

        height (int): Image height

        

    Returns:

        dict: Dictionary with normalized coordinates

    """
    transformed = {}
    
    for line_name, points in line_dict.items():
        transformed[line_name] = []
        for point in points:
            # Normalize coordinates by dividing by image dimensions
            transformed[line_name].append({
                "x": point["x"] / width,
                "y": point["y"] / height
            })
            
    return transformed



def plot_camera_position(cam_params, keypoints_dict=None, lines_dict=None):
    """

    Plot the camera position, orientation and points relative to the football field.

    

    Args:

        cam_params (dict): Dictionary containing camera parameters

        keypoints_dict (dict, optional): Dictionary containing keypoints in image coordinates

        lines_dict (dict, optional): Dictionary containing lines in image coordinates

    """
    # Field dimensions in meters
    field_length = 105
    field_width = 68
    
    # Get camera parameters
    camera_pos = np.array(cam_params["cam_params"]["position_meters"])
    R = np.array(cam_params["cam_params"]["rotation_matrix"])
    
    # Create 3D figure
    fig = plt.figure(figsize=(12, 8))
    ax = fig.add_subplot(111, projection='3d')
    
    # Draw main field
    field_corners = np.array([
        [-field_length/2, -field_width/2, 0],
        [field_length/2, -field_width/2, 0],
        [field_length/2, field_width/2, 0],
        [-field_length/2, field_width/2, 0],
        [-field_length/2, -field_width/2, 0]
    ])
    ax.plot(field_corners[:, 0], field_corners[:, 1], field_corners[:, 2], 'g-', label='Field')
    
    # Add midline
    ax.plot([0, 0], [-field_width/2, field_width/2], [0, 0], 'w--', label='Midline')
    
    # Add penalty areas
    # Left penalty area
    penalty_line, = ax.plot([-field_length/2, -field_length/2+16.5], [-20.16, -20.16], [0, 0], 'r-', linewidth=2, label='Penalty areas')
    ax.plot([-field_length/2, -field_length/2+16.5], [20.16, 20.16], [0, 0], 'r-', linewidth=2)
    ax.plot([-field_length/2+16.5, -field_length/2+16.5], [-20.16, 20.16], [0, 0], 'r-', linewidth=2)
    
    # Right penalty area
    ax.plot([field_length/2, field_length/2-16.5], [-20.16, -20.16], [0, 0], 'r-', linewidth=2)
    ax.plot([field_length/2, field_length/2-16.5], [20.16, 20.16], [0, 0], 'r-', linewidth=2)
    ax.plot([field_length/2-16.5, field_length/2-16.5], [-20.16, 20.16], [0, 0], 'r-', linewidth=2)
    
    # Add center circle
    circle_points = 100
    theta = np.linspace(0, 2*np.pi, circle_points)
    radius = 9.15
    x = radius * np.cos(theta)
    y = radius * np.sin(theta)
    z = np.zeros_like(theta)
    ax.plot(x, y, z, 'y-', label='Center circle')
    
    # Plot camera position
    ax.scatter(camera_pos[0], camera_pos[1], camera_pos[2], color='red', s=100, label='Camera')
    
    # Draw image plane
    rect_width = 16     
    rect_height = 9
    corners_cam = np.array([
        [-rect_width/2, -rect_height/2, 2],
        [rect_width/2, -rect_height/2, 2],
        [rect_width/2, rect_height/2, 2],
        [-rect_width/2, rect_height/2, 2],
        [-rect_width/2, -rect_height/2, 2]
    ])
    corners_world = np.array([camera_pos + R.T @ corner for corner in corners_cam])
    ax.plot(corners_world[:, 0], corners_world[:, 1], corners_world[:, 2], 
            'magenta', linewidth=2, label='Image plane')
    
    # Draw lines from camera to image plane corners
    for corner in corners_world[:-1]:
        ax.plot([camera_pos[0], corner[0]], 
                [camera_pos[1], corner[1]], 
                [camera_pos[2], corner[2]], 
                'y--', alpha=0.5)
    
    # Draw view direction
    direction = R[2] * 10
    ax.quiver(camera_pos[0], camera_pos[1], camera_pos[2],
              direction[0], direction[1], direction[2],
              color='blue', label='View direction')
    
    # Set labels and title
    ax.set_xlabel('X (meters)')
    ax.set_ylabel('Y (meters)')
    ax.set_zlabel('Z (meters)')
    ax.set_title('Camera position relative to field')
    
    # Set axis limits with equal aspect ratio
    ax.set_xlim([-field_length/2, field_length/2])
    ax.set_ylim([-field_width/2, field_width/2])
    ax.set_zlim([-30, 10])
    ax.set_box_aspect([field_length, field_width, 40])  # Aspect ratio is 1:1:1
    
    # Add grid
    ax.grid(True)
    
    # Add goal annotations
    ax.text(-field_length/2, 0, 0, 'Left Goal', color='black')
    ax.text(field_length/2, 0, 0, 'Right Goal', color='black')
    
    # Calculate and display Euler angles
    euler_angles = np.array([
        np.arctan2(R[2,1], R[2,2]),  # roll
        np.arctan2(-R[2,0], np.sqrt(R[2,1]**2 + R[2,2]**2)),  # pitch
        np.arctan2(R[1,0], R[0,0])   # yaw
    ]) * 180 / np.pi
    
    # Add camera information text
    plt.figtext(0.02, 0.02, 
                f'Position: {camera_pos}\n'
                f'Focal length X: {cam_params["cam_params"]["x_focal_length"]:.2f}\n'
                f'Focal length Y: {cam_params["cam_params"]["y_focal_length"]:.2f}\n'
                f'Rotation (deg):\n'
                f'Roll: {euler_angles[0]:.1f}°\n'
                f'Pitch: {euler_angles[1]:.1f}°\n'
                f'Yaw: {euler_angles[2]:.1f}°', 
                bbox=dict(facecolor='white', alpha=0.8))
    
    # Create custom legend
    legend_elements = [
        Line2D([0], [0], color='g', label='Field'),
        Line2D([0], [0], color='w', linestyle='--', label='Midline'),
        Line2D([0], [0], color='y', label='Center circle'),
        Line2D([0], [0], color='r', label='Penalty areas'),
        Line2D([0], [0], color='magenta', label='Image plane'),
        Line2D([0], [0], color='blue', label='View direction'),
        Line2D([0], [0], color='y', linestyle='--', label='Projection rays'),
        plt.scatter([0], [0], color='red', s=100, label='Camera'),
    ]

    # Add keypoints and lines to legend if they exist
    if keypoints_dict is not None:
        legend_elements.append(plt.scatter([0], [0], color='cyan', s=50, label='Keypoints'))
    
    if lines_dict is not None:
        legend_elements.append(plt.scatter([0], [0], color='magenta', s=50, label='Line points'))
        legend_elements.append(Line2D([0], [0], color='m', alpha=0.5, label='Lines'))

    # Add the legend with all elements
    ax.legend(handles=legend_elements, loc='upper right')

    # Add this function to convert image points to 3D world coordinates
    def image_to_world(point_2d, cam_params):
        # Create projection matrix P
        K = np.array([
            [cam_params["cam_params"]["x_focal_length"], 0, cam_params["cam_params"]["principal_point"][0]],
            [0, cam_params["cam_params"]["y_focal_length"], cam_params["cam_params"]["principal_point"][1]],
            [0, 0, 1]
        ])
        R = np.array(cam_params["cam_params"]["rotation_matrix"])
        t = -R @ np.array(cam_params["cam_params"]["position_meters"])
        P = K @ np.hstack((R, t.reshape(-1,1)))
        
        # Create point on image plane in homogeneous coordinates
        point_2d_h = np.array([point_2d[0], point_2d[1], 1])
        
        # Back-project ray from camera
        ray = np.linalg.inv(K) @ point_2d_h
        ray = R.T @ ray
        
        # Find intersection with Z=0 plane
        camera_pos = np.array(cam_params["cam_params"]["position_meters"])
        t = -camera_pos[2] / ray[2]
        world_point = camera_pos + t * ray
        
        return world_point[:2]  # Return only X,Y coordinates since Z=0

    # Plot keypoints if provided
    if keypoints_dict is not None:
        for kp_key, kp_value in keypoints_dict.items():
            point_2d = np.array([kp_value['x'], kp_value['y']])
            point_3d = image_to_world(point_2d, cam_params)
            
            # Plot point
            ax.scatter(point_3d[0], point_3d[1], 0, color='cyan', s=50, label='Keypoints' if kp_key == 1 else "")
            # Add keypoint number as text
            ax.text(point_3d[0], point_3d[1], 0.1, str(kp_key), 
                   color='black', fontsize=8, ha='center', va='bottom')

    # Plot lines if provided
    if lines_dict is not None:
        for line_key, line_value in lines_dict.items():
            # Convert start point
            start_2d = np.array([line_value['x_1'], line_value['y_1']])
            start_3d = image_to_world(start_2d, cam_params)
            
            # Convert end point
            end_2d = np.array([line_value['x_2'], line_value['y_2']])
            end_3d = image_to_world(end_2d, cam_params)
            
            # Plot points and line
            ax.scatter(start_3d[0], start_3d[1], 0, color='magenta', s=50)
            ax.scatter(end_3d[0], end_3d[1], 0, color='magenta', s=50, 
                      label='Line points' if line_key == list(lines_dict.keys())[0] else "")
            ax.plot([start_3d[0], end_3d[0]], 
                   [start_3d[1], end_3d[1]], 
                   [0, 0], 'm-', alpha=0.5)

    plt.show()


def plot_2d_points(image_path, keypoints_dict=None, lines_dict=None):
    """

    Plot keypoints and lines on the original 2D image.

    

    Args:

        image_path (str): Path to the original image

        keypoints_dict (dict, optional): Dictionary containing keypoints in image coordinates

        lines_dict (dict, optional): Dictionary containing lines in image coordinates

    """
    # Load and display the image
    image = plt.imread(image_path)
    plt.figure(figsize=(15, 8))
    plt.imshow(image)
    
    # Plot keypoints if provided
    if keypoints_dict is not None:
        for kp_key, kp_value in keypoints_dict.items():
            x, y = kp_value['x'], kp_value['y']
            plt.scatter(x, y, color='cyan', s=100)
            plt.text(x+10, y+10, str(kp_key), color='white', fontsize=8,
                    bbox=dict(facecolor='black', alpha=0.7))
    
    # Plot lines if provided
    if lines_dict is not None:
        for line_key, line_value in lines_dict.items():
            x1, y1 = line_value['x_1'], line_value['y_1']
            x2, y2 = line_value['x_2'], line_value['y_2']
            plt.scatter([x1, x2], [y1, y2], color='magenta', s=100)
            plt.plot([x1, x2], [y1, y2], 'magenta', alpha=0.5)
    
    plt.title('2D Points and Lines on Original Image')
    plt.axis('off')
    plt.show()


def main():
    # Load image
    image = Image.open("examples/input/cam1.jpg")
    # Convert PIL Image to tensor format expected by utils
    image_tensor = torch.FloatTensor(np.array(image)).permute(2, 0, 1)
    
    # Get actual image dimensions
    img_width, img_height = image.size
    
    # Transform data using actual image dimensions
    # trans_data1 = transform_data(cam1_line_dict, img_width, img_height)
    trans_data1 = transform_data(cam3_line_dict, img_width, img_height)

    # Print transformed data
    # print("\n=== Transformed Data ===")
    # for line_name, points in trans_data1.items():
    #     print(f"{line_name}: {points}")
    
    # Initialize databases with transformed data and tensor image
    kp_db = KeypointsDB(trans_data1, image_tensor)
    ln_db = LineKeypointsDB(trans_data1, image_tensor)
    
    # Get keypoints and lines
    kp_db.get_full_keypoints()
    ln_db.get_lines()

    kp_dict = kp_db.keypoints_final
    ln_dict = ln_db.lines

    # Print number of keypoints and lines before completion
    print("\n=== Before Completion ===")
    print(f"Number of keypoints: {len(kp_dict)}")

    # Complete keypoints using actual image dimensions
    kp_dict, ln_dict = complete_keypoints(kp_dict, ln_dict, img_width, img_height)

    # Print number of keypoints and lines after completion
    print("\n=== After Completion ===")
    print(f"Number of keypoints: {len(kp_dict)}")

    # Print new keypoints
    print("\n=== New Keypoints ===")
    for kp_key, kp_value in kp_dict.items():
        print(f"{kp_key}: {kp_value}")
    
    # Initialize calibration with actual image dimensions
    cam = FramebyFrameCalib(img_width, img_height)
    cam.update(kp_dict, ln_dict)
    cam_params = cam.heuristic_voting(refine_lines=True)
    
    print(cam)
    print(cam_params)

    # Plot camera position and line points
    plot_camera_position(cam_params, kp_dict, ln_dict)
    
    # Plot 2D points
    plot_2d_points("examples/input/cam3.jpg", kp_dict, ln_dict)

if __name__ == "__main__":
    main()