File size: 12,382 Bytes
3d1f2c9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 |
import argparse
import json
import sys
import os
import matplotlib.pyplot as plt
import numpy as np
from tqdm import tqdm
sys.path.append("sn_calibration")
sys.path.append("sn_calibration/src")
from soccerpitch import SoccerPitch
def distance(point1, point2):
"""
Computes euclidian distance between 2D points
:param point1
:param point2
:return: euclidian distance between point1 and point2
"""
diff = np.array([point1['x'], point1['y']]) - np.array([point2['x'], point2['y']])
sq_dist = np.square(diff)
return np.sqrt(sq_dist.sum())
def mirror_labels(lines_dict):
"""
Replace each line class key of the dictionary with its opposite element according to a central projection by the
soccer pitch center
:param lines_dict: dictionary whose keys will be mirrored
:return: Dictionary with mirrored keys and same values
"""
mirrored_dict = dict()
for line_class, value in lines_dict.items():
mirrored_dict[SoccerPitch.symetric_classes[line_class]] = value
return mirrored_dict
def evaluate_detection_prediction(detected_lines, groundtruth_lines, threshold=2.):
"""
Evaluates the prediction of extremities. The extremities associated to a class are unordered. The extremities of the
"Circle central" element is not well-defined for this task, thus this class is ignored.
Computes confusion matrices for a level of precision specified by the threshold.
A groundtruth extremity point is correctly classified if it lies at less than threshold pixels from the
corresponding extremity point of the prediction of the same class.
Computes also the euclidian distance between each predicted extremity and its closest groundtruth extremity, when
both the groundtruth and the prediction contain the element class.
:param detected_lines: dictionary of detected lines classes as keys and associated predicted extremities as values
:param groundtruth_lines: dictionary of annotated lines classes as keys and associated annotated points as values
:param threshold: distance in pixels that distinguishes good matches from bad ones
:return: confusion matrix, per class confusion matrix & per class localization errors
"""
confusion_mat = np.zeros((2, 2), dtype=np.float32)
per_class_confusion = {}
errors_dict = {}
detected_classes = set(detected_lines.keys())
groundtruth_classes = set(groundtruth_lines.keys())
if "Circle central" in groundtruth_classes:
groundtruth_classes.remove("Circle central")
if "Circle central" in detected_classes:
detected_classes.remove("Circle central")
false_positives_classes = detected_classes - groundtruth_classes
for false_positive_class in false_positives_classes:
false_positives = len(detected_lines[false_positive_class])
confusion_mat[0, 1] += false_positives
per_class_confusion[false_positive_class] = np.array([[0., false_positives], [0., 0.]])
false_negatives_classes = groundtruth_classes - detected_classes
for false_negatives_class in false_negatives_classes:
false_negatives = len(groundtruth_lines[false_negatives_class])
confusion_mat[1, 0] += false_negatives
per_class_confusion[false_negatives_class] = np.array([[0., 0.], [false_negatives, 0.]])
common_classes = detected_classes - false_positives_classes
for detected_class in common_classes:
detected_points = detected_lines[detected_class]
groundtruth_points = groundtruth_lines[detected_class]
groundtruth_extremities = [groundtruth_points[0], groundtruth_points[-1]]
predicted_extremities = [detected_points[0], detected_points[-1]]
per_class_confusion[detected_class] = np.zeros((2, 2))
dist1 = distance(groundtruth_extremities[0], predicted_extremities[0])
dist1rev = distance(groundtruth_extremities[1], predicted_extremities[0])
dist2 = distance(groundtruth_extremities[1], predicted_extremities[1])
dist2rev = distance(groundtruth_extremities[0], predicted_extremities[1])
if dist1rev <= dist1 and dist2rev <= dist2:
# reverse order
dist1 = dist1rev
dist2 = dist2rev
errors_dict[detected_class] = [dist1, dist2]
if dist1 < threshold:
confusion_mat[0, 0] += 1
per_class_confusion[detected_class][0, 0] += 1
else:
# treat too far detections as false positives
confusion_mat[0, 1] += 1
per_class_confusion[detected_class][0, 1] += 1
if dist2 < threshold:
confusion_mat[0, 0] += 1
per_class_confusion[detected_class][0, 0] += 1
else:
# treat too far detections as false positives
confusion_mat[0, 1] += 1
per_class_confusion[detected_class][0, 1] += 1
return confusion_mat, per_class_confusion, errors_dict
def scale_points(points_dict, s_width, s_height):
"""
Scale points by s_width and s_height factors
:param points_dict: dictionary of annotations/predictions with normalized point values
:param s_width: width scaling factor
:param s_height: height scaling factor
:return: dictionary with scaled points
"""
line_dict = {}
for line_class, points in points_dict.items():
scaled_points = []
for point in points:
new_point = {'x': point['x'] * (s_width-1), 'y': point['y'] * (s_height-1)}
scaled_points.append(new_point)
if len(scaled_points):
line_dict[line_class] = scaled_points
return line_dict
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Test')
parser.add_argument('-s', '--soccernet', default="./annotations", type=str,
help='Path to the SoccerNet-V3 dataset folder')
parser.add_argument('-p', '--prediction', default="./results_bis",
required=False, type=str,
help="Path to the prediction folder")
parser.add_argument('-t', '--threshold', default=10, required=False, type=int,
help="Accuracy threshold in pixels")
parser.add_argument('--split', required=False, type=str, default="test", help='Select the split of data')
parser.add_argument('--resolution_width', required=False, type=int, default=960,
help='width resolution of the images')
parser.add_argument('--resolution_height', required=False, type=int, default=540,
help='height resolution of the images')
args = parser.parse_args()
accuracies = []
precisions = []
recalls = []
dict_errors = {}
per_class_confusion_dict = {}
dataset_dir = os.path.join(args.soccernet, args.split)
if not os.path.exists(dataset_dir):
print("Invalid dataset path !")
exit(-1)
annotation_files = [f for f in os.listdir(dataset_dir) if ".json" in f]
with tqdm(enumerate(annotation_files), total=len(annotation_files), ncols=160) as t:
for i, annotation_file in t:
frame_index = annotation_file.split(".")[0]
annotation_file = os.path.join(args.soccernet, args.split, annotation_file)
prediction_file = os.path.join(args.prediction, args.split, f"extremities_{frame_index}.json")
if not os.path.exists(prediction_file):
accuracies.append(0.)
precisions.append(0.)
recalls.append(0.)
continue
with open(annotation_file, 'r') as f:
line_annotations = json.load(f)
with open(prediction_file, 'r') as f:
predictions = json.load(f)
predictions = scale_points(predictions, args.resolution_width, args.resolution_height)
line_annotations = scale_points(line_annotations, args.resolution_width, args.resolution_height)
img_prediction = predictions
img_groundtruth = line_annotations
confusion1, per_class_conf1, reproj_errors1 = evaluate_detection_prediction(img_prediction,
img_groundtruth,
args.threshold)
confusion2, per_class_conf2, reproj_errors2 = evaluate_detection_prediction(img_prediction,
mirror_labels(
img_groundtruth),
args.threshold)
accuracy1, accuracy2 = 0., 0.
if confusion1.sum() > 0:
accuracy1 = confusion1[0, 0] / confusion1.sum()
if confusion2.sum() > 0:
accuracy2 = confusion2[0, 0] / confusion2.sum()
if accuracy1 > accuracy2:
accuracy = accuracy1
confusion = confusion1
per_class_conf = per_class_conf1
reproj_errors = reproj_errors1
else:
accuracy = accuracy2
confusion = confusion2
per_class_conf = per_class_conf2
reproj_errors = reproj_errors2
accuracies.append(accuracy)
if confusion[0, :].sum() > 0:
precision = confusion[0, 0] / (confusion[0, :].sum())
precisions.append(precision)
if (confusion[0, 0] + confusion[1, 0]) > 0:
recall = confusion[0, 0] / (confusion[0, 0] + confusion[1, 0])
recalls.append(recall)
for line_class, errors in reproj_errors.items():
if line_class in dict_errors.keys():
dict_errors[line_class].extend(errors)
else:
dict_errors[line_class] = errors
for line_class, confusion_mat in per_class_conf.items():
if line_class in per_class_confusion_dict.keys():
per_class_confusion_dict[line_class] += confusion_mat
else:
per_class_confusion_dict[line_class] = confusion_mat
mRecall = np.mean(recalls)
sRecall = np.std(recalls)
medianRecall = np.median(recalls)
print(
f" On SoccerNet {args.split} set, recall mean value : {mRecall * 100:2.2f}% with standard deviation of {sRecall * 100:2.2f}% and median of {medianRecall * 100:2.2f}%")
mPrecision = np.mean(precisions)
sPrecision = np.std(precisions)
medianPrecision = np.median(precisions)
print(
f" On SoccerNet {args.split} set, precision mean value : {mPrecision * 100:2.2f}% with standard deviation of {sPrecision * 100:2.2f}% and median of {medianPrecision * 100:2.2f}%")
mAccuracy = np.mean(accuracies)
sAccuracy = np.std(accuracies)
medianAccuracy = np.median(accuracies)
print(
f" On SoccerNet {args.split} set, accuracy mean value : {mAccuracy * 100:2.2f}% with standard deviation of {sAccuracy * 100:2.2f}% and median of {medianAccuracy * 100:2.2f}%")
for line_class, confusion_mat in per_class_confusion_dict.items():
class_accuracy = confusion_mat[0, 0] / confusion_mat.sum()
class_recall = confusion_mat[0, 0] / (confusion_mat[0, 0] + confusion_mat[1, 0])
class_precision = confusion_mat[0, 0] / (confusion_mat[0, 0] + confusion_mat[0, 1])
print(
f"For class {line_class}, accuracy of {class_accuracy * 100:2.2f}%, precision of {class_precision * 100:2.2f}% and recall of {class_recall * 100:2.2f}%")
for k, v in dict_errors.items():
fig, ax1 = plt.subplots(figsize=(11, 8))
ax1.hist(v, bins=30, range=(0, 60))
ax1.set_title(k)
ax1.set_xlabel("Errors in pixel")
os.makedirs(f"./results/", exist_ok=True)
plt.savefig(f"./results/{k}_detection_error.png")
plt.close(fig)
|