File size: 17,585 Bytes
3d1f2c9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 |
import cv2 as cv
import numpy as np
from soccerpitch import SoccerPitch
def pan_tilt_roll_to_orientation(pan, tilt, roll):
"""
Conversion from euler angles to orientation matrix.
:param pan:
:param tilt:
:param roll:
:return: orientation matrix
"""
Rpan = np.array([
[np.cos(pan), -np.sin(pan), 0],
[np.sin(pan), np.cos(pan), 0],
[0, 0, 1]])
Rroll = np.array([
[np.cos(roll), -np.sin(roll), 0],
[np.sin(roll), np.cos(roll), 0],
[0, 0, 1]])
Rtilt = np.array([
[1, 0, 0],
[0, np.cos(tilt), -np.sin(tilt)],
[0, np.sin(tilt), np.cos(tilt)]])
rotMat = np.dot(Rpan, np.dot(Rtilt, Rroll))
return rotMat
def rotation_matrix_to_pan_tilt_roll(rotation):
"""
Decomposes the rotation matrix into pan, tilt and roll angles. There are two solutions, but as we know that cameramen
try to minimize roll, we take the solution with the smallest roll.
:param rotation: rotation matrix
:return: pan, tilt and roll in radians
"""
orientation = np.transpose(rotation)
first_tilt = np.arccos(orientation[2, 2])
second_tilt = - first_tilt
sign_first_tilt = 1. if np.sin(first_tilt) > 0. else -1.
sign_second_tilt = 1. if np.sin(second_tilt) > 0. else -1.
first_pan = np.arctan2(sign_first_tilt * orientation[0, 2], sign_first_tilt * - orientation[1, 2])
second_pan = np.arctan2(sign_second_tilt * orientation[0, 2], sign_second_tilt * - orientation[1, 2])
first_roll = np.arctan2(sign_first_tilt * orientation[2, 0], sign_first_tilt * orientation[2, 1])
second_roll = np.arctan2(sign_second_tilt * orientation[2, 0], sign_second_tilt * orientation[2, 1])
# print(f"first solution {first_pan*180./np.pi}, {first_tilt*180./np.pi}, {first_roll*180./np.pi}")
# print(f"second solution {second_pan*180./np.pi}, {second_tilt*180./np.pi}, {second_roll*180./np.pi}")
if np.fabs(first_roll) < np.fabs(second_roll):
return first_pan, first_tilt, first_roll
return second_pan, second_tilt, second_roll
def unproject_image_point(homography, point2D):
"""
Given the homography from the world plane of the pitch and the image and a point localized on the pitch plane in the
image, returns the coordinates of the point in the 3D pitch plane.
/!\ Only works for correspondences on the pitch (Z = 0).
:param homography: the homography
:param point2D: the image point whose relative coordinates on the world plane of the pitch are to be found
:return: A 2D point on the world pitch plane in homogenous coordinates (X,Y,1) with X and Y being the world
coordinates of the point.
"""
hinv = np.linalg.inv(homography)
pitchpoint = hinv @ point2D
pitchpoint = pitchpoint / pitchpoint[2]
return pitchpoint
class Camera:
def __init__(self, iwidth=960, iheight=540):
self.position = np.zeros(3)
self.rotation = np.eye(3)
self.calibration = np.eye(3)
self.radial_distortion = np.zeros(6)
self.thin_prism_disto = np.zeros(4)
self.tangential_disto = np.zeros(2)
self.image_width = iwidth
self.image_height = iheight
self.xfocal_length = 1
self.yfocal_length = 1
self.principal_point = (self.image_width / 2, self.image_height / 2)
def solve_pnp(self, point_matches):
"""
With a known calibration matrix, this method can be used in order to retrieve rotation and translation camera
parameters.
:param point_matches: A list of pairs of 3D-2D point matches .
"""
target_pts = np.array([pt[0] for pt in point_matches])
src_pts = np.array([pt[1] for pt in point_matches])
_, rvec, t, inliers = cv.solvePnPRansac(target_pts, src_pts, self.calibration, None)
self.rotation, _ = cv.Rodrigues(rvec)
self.position = - np.transpose(self.rotation) @ t.flatten()
def refine_camera(self, pointMatches):
"""
Once that there is a minimal set of initial camera parameters (calibration, rotation and position roughly known),
this method can be used to refine the solution using a non-linear optimization procedure.
:param pointMatches: A list of pairs of 3D-2D point matches .
"""
rvec, _ = cv.Rodrigues(self.rotation)
target_pts = np.array([pt[0] for pt in pointMatches])
src_pts = np.array([pt[1] for pt in pointMatches])
rvec, t = cv.solvePnPRefineLM(target_pts, src_pts, self.calibration, None, rvec, -self.rotation @ self.position,
(cv.TERM_CRITERIA_MAX_ITER + cv.TERM_CRITERIA_EPS, 20000, 0.00001))
self.rotation, _ = cv.Rodrigues(rvec)
self.position = - np.transpose(self.rotation) @ t
def from_homography(self, homography):
"""
This method initializes the essential camera parameters from the homography between the world plane of the pitch
and the image. It is based on the extraction of the calibration matrix from the homography (Algorithm 8.2 of
Multiple View Geometry in computer vision, p225), then using the relation between the camera parameters and the
same homography, we extract rough rotation and position estimates (Example 8.1 of Multiple View Geometry in
computer vision, p196).
:param homography: The homography that captures the transformation between the 3D flat model of the soccer pitch
and its image.
"""
success, _ = self.estimate_calibration_matrix_from_plane_homography(homography)
if not success:
return False
hprim = np.linalg.inv(self.calibration) @ homography
lambda1 = 1 / np.linalg.norm(hprim[:, 0])
lambda2 = 1 / np.linalg.norm(hprim[:, 1])
lambda3 = np.sqrt(lambda1 * lambda2)
r0 = hprim[:, 0] * lambda1
r1 = hprim[:, 1] * lambda2
r2 = np.cross(r0, r1)
R = np.column_stack((r0, r1, r2))
u, s, vh = np.linalg.svd(R)
R = u @ vh
if np.linalg.det(R) < 0:
u[:, 2] *= -1
R = u @ vh
self.rotation = R
t = hprim[:, 2] * lambda3
self.position = - np.transpose(R) @ t
return True
def to_json_parameters(self):
"""
Saves camera to a JSON serializable dictionary.
:return: The dictionary
"""
pan, tilt, roll = rotation_matrix_to_pan_tilt_roll(self.rotation)
camera_dict = {
"pan_degrees": pan * 180. / np.pi,
"tilt_degrees": tilt * 180. / np.pi,
"roll_degrees": roll * 180. / np.pi,
"position_meters": self.position.tolist(),
"x_focal_length": self.xfocal_length,
"y_focal_length": self.yfocal_length,
"principal_point": [self.principal_point[0], self.principal_point[1]],
"radial_distortion": self.radial_distortion.tolist(),
"tangential_distortion": self.tangential_disto.tolist(),
"thin_prism_distortion": self.thin_prism_disto.tolist()
}
return camera_dict
def from_json_parameters(self, calib_json_object):
"""
Loads camera parameters from dictionary.
:param calib_json_object: the dictionary containing camera parameters.
"""
self.principal_point = calib_json_object["principal_point"]
self.image_width = 2 * self.principal_point[0]
self.image_height = 2 * self.principal_point[1]
self.xfocal_length = calib_json_object["x_focal_length"]
self.yfocal_length = calib_json_object["y_focal_length"]
self.calibration = np.array([
[self.xfocal_length, 0, self.principal_point[0]],
[0, self.yfocal_length, self.principal_point[1]],
[0, 0, 1]
], dtype='float')
pan = calib_json_object['pan_degrees'] * np.pi / 180.
tilt = calib_json_object['tilt_degrees'] * np.pi / 180.
roll = calib_json_object['roll_degrees'] * np.pi / 180.
self.rotation = np.array([
[-np.sin(pan) * np.sin(roll) * np.cos(tilt) + np.cos(pan) * np.cos(roll),
np.sin(pan) * np.cos(roll) + np.sin(roll) * np.cos(pan) * np.cos(tilt), np.sin(roll) * np.sin(tilt)],
[-np.sin(pan) * np.cos(roll) * np.cos(tilt) - np.sin(roll) * np.cos(pan),
-np.sin(pan) * np.sin(roll) + np.cos(pan) * np.cos(roll) * np.cos(tilt), np.sin(tilt) * np.cos(roll)],
[np.sin(pan) * np.sin(tilt), -np.sin(tilt) * np.cos(pan), np.cos(tilt)]
], dtype='float')
self.rotation = np.transpose(pan_tilt_roll_to_orientation(pan, tilt, roll))
self.position = np.array(calib_json_object['position_meters'], dtype='float')
self.radial_distortion = np.array(calib_json_object['radial_distortion'], dtype='float')
self.tangential_disto = np.array(calib_json_object['tangential_distortion'], dtype='float')
self.thin_prism_disto = np.array(calib_json_object['thin_prism_distortion'], dtype='float')
def distort(self, point):
"""
Given a point in the normalized image plane, apply distortion
:param point: 2D point on the normalized image plane
:return: 2D distorted point
"""
numerator = 1
denominator = 1
radius = np.sqrt(point[0] * point[0] + point[1] * point[1])
for i in range(3):
k = self.radial_distortion[i]
numerator += k * radius ** (2 * (i + 1))
k2n = self.radial_distortion[i + 3]
denominator += k2n * radius ** (2 * (i + 1))
radial_distortion_factor = numerator / denominator
xpp = point[0] * radial_distortion_factor + \
2 * self.tangential_disto[0] * point[0] * point[1] + self.tangential_disto[1] * (
radius ** 2 + 2 * point[0] ** 2) + \
self.thin_prism_disto[0] * radius ** 2 + self.thin_prism_disto[1] * radius ** 4
ypp = point[1] * radial_distortion_factor + \
2 * self.tangential_disto[1] * point[0] * point[1] + self.tangential_disto[0] * (
radius ** 2 + 2 * point[1] ** 2) + \
self.thin_prism_disto[2] * radius ** 2 + self.thin_prism_disto[3] * radius ** 4
return np.array([xpp, ypp], dtype=np.float32)
def project_point(self, point3D, distort=True):
"""
Uses current camera parameters to predict where a 3D point is seen by the camera.
:param point3D: The 3D point in world coordinates.
:param distort: optional parameter to allow projection without distortion.
:return: The 2D coordinates of the imaged point
"""
point = point3D - self.position
rotated_point = self.rotation @ np.transpose(point)
if rotated_point[2] <= 1e-3 :
return np.zeros(3)
rotated_point = rotated_point / rotated_point[2]
if distort:
distorted_point = self.distort(rotated_point)
else:
distorted_point = rotated_point
x = distorted_point[0] * self.xfocal_length + self.principal_point[0]
y = distorted_point[1] * self.yfocal_length + self.principal_point[1]
return np.array([x, y, 1])
def scale_resolution(self, factor):
"""
Adapts the internal parameters for image resolution changes
:param factor: scaling factor
"""
self.xfocal_length = self.xfocal_length * factor
self.yfocal_length = self.yfocal_length * factor
self.image_width = self.image_width * factor
self.image_height = self.image_height * factor
self.principal_point = (self.image_width / 2, self.image_height / 2)
self.calibration = np.array([
[self.xfocal_length, 0, self.principal_point[0]],
[0, self.yfocal_length, self.principal_point[1]],
[0, 0, 1]
], dtype='float')
def draw_corners(self, image, color=(0, 255, 0)):
"""
Draw the corners of a standard soccer pitch in the image.
:param image: cv image
:param color
:return: the image mat modified.
"""
field = SoccerPitch()
for pt3D in field.point_dict.values():
projected = self.project_point(pt3D)
if projected[2] == 0.:
continue
projected /= projected[2]
if 0 < projected[0] < self.image_width and 0 < projected[1] < self.image_height:
cv.circle(image, (int(projected[0]), int(projected[1])), 3, color, 2)
return image
def draw_pitch(self, image, color=(0, 255, 0)):
"""
Draws all the lines of the pitch on the image.
:param image
:param color
:return: modified image
"""
field = SoccerPitch()
polylines = field.sample_field_points()
for line in polylines.values():
prev_point = self.project_point(line[0])
for point in line[1:]:
projected = self.project_point(point)
if projected[2] == 0.:
continue
projected /= projected[2]
if 0 < projected[0] < self.image_width and 0 < projected[1] < self.image_height:
cv.line(image, (int(prev_point[0]), int(prev_point[1])), (int(projected[0]), int(projected[1])),
color, 1)
prev_point = projected
return image
def draw_colorful_pitch(self, image, palette):
"""
Draws all the lines of the pitch on the image, each line color is specified by the palette argument.
:param image:
:param palette: dictionary associating line classes names with their BGR color.
:return: modified image
"""
field = SoccerPitch()
polylines = field.sample_field_points()
for key, line in polylines.items():
if key not in palette.keys():
print(f"Can't draw {key}")
continue
prev_point = self.project_point(line[0])
for point in line[1:]:
projected = self.project_point(point)
if projected[2] == 0.:
continue
projected /= projected[2]
if 0 < projected[0] < self.image_width and 0 < projected[1] < self.image_height:
# BGR color
cv.line(image, (int(prev_point[0]), int(prev_point[1])), (int(projected[0]), int(projected[1])),
palette[key][::-1], 1)
prev_point = projected
return image
def estimate_calibration_matrix_from_plane_homography(self, homography):
"""
This method initializes the calibration matrix from the homography between the world plane of the pitch
and the image. It is based on the extraction of the calibration matrix from the homography (Algorithm 8.2 of
Multiple View Geometry in computer vision, p225). The extraction is sensitive to noise, which is why we keep the
principal point in the middle of the image rather than using the one extracted by this method.
:param homography: homography between the world plane of the pitch and the image
"""
H = np.reshape(homography, (9,))
A = np.zeros((5, 6))
A[0, 1] = 1.
A[1, 0] = 1.
A[1, 2] = -1.
A[2, 3] = self.principal_point[1] / self.principal_point[0]
A[2, 4] = -1.0
A[3, 0] = H[0] * H[1]
A[3, 1] = H[0] * H[4] + H[1] * H[3]
A[3, 2] = H[3] * H[4]
A[3, 3] = H[0] * H[7] + H[1] * H[6]
A[3, 4] = H[3] * H[7] + H[4] * H[6]
A[3, 5] = H[6] * H[7]
A[4, 0] = H[0] * H[0] - H[1] * H[1]
A[4, 1] = 2 * H[0] * H[3] - 2 * H[1] * H[4]
A[4, 2] = H[3] * H[3] - H[4] * H[4]
A[4, 3] = 2 * H[0] * H[6] - 2 * H[1] * H[7]
A[4, 4] = 2 * H[3] * H[6] - 2 * H[4] * H[7]
A[4, 5] = H[6] * H[6] - H[7] * H[7]
u, s, vh = np.linalg.svd(A)
w = vh[-1]
W = np.zeros((3, 3))
W[0, 0] = w[0] / w[5]
W[0, 1] = w[1] / w[5]
W[0, 2] = w[3] / w[5]
W[1, 0] = w[1] / w[5]
W[1, 1] = w[2] / w[5]
W[1, 2] = w[4] / w[5]
W[2, 0] = w[3] / w[5]
W[2, 1] = w[4] / w[5]
W[2, 2] = w[5] / w[5]
try:
Ktinv = np.linalg.cholesky(W)
except np.linalg.LinAlgError:
K = np.eye(3)
return False, K
K = np.linalg.inv(np.transpose(Ktinv))
K /= K[2, 2]
self.xfocal_length = K[0, 0]
self.yfocal_length = K[1, 1]
# the principal point estimated by this method is very noisy, better keep it in the center of the image
self.principal_point = (self.image_width / 2, self.image_height / 2)
# self.principal_point = (K[0,2], K[1,2])
self.calibration = np.array([
[self.xfocal_length, 0, self.principal_point[0]],
[0, self.yfocal_length, self.principal_point[1]],
[0, 0, 1]
], dtype='float')
return True, K
|