File size: 12,775 Bytes
3d1f2c9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 |
import cv2
import torch
import scipy
import random
import numpy as np
from shapely.geometry import Point, Polygon, MultiPoint
def calculate_metrics(gt, pred, mask, conf_th=0.1, dist_th=5):
geometry_mask = (mask[:, :-1] > 0).cpu()
pred_mask = torch.all((pred[:, :, :, -1] > conf_th), dim=-1)
gt_mask = torch.all((gt[:, :, :, -1] > conf_th), dim=-1)
pred_pos = pred[geometry_mask][:, 0, :]
pred_mask = pred_mask[geometry_mask]
gt_pos = gt[geometry_mask][:, 0, :]
gt_mask = gt_mask[geometry_mask]
distances = torch.norm(pred_pos - gt_pos, dim=1)
# Count true positives, false positives, and false negatives based on distance threshold
true_positives = ((distances < dist_th) & pred_mask & gt_mask).sum().item()
true_negatives = (~pred_mask & ~gt_mask).sum().item()
false_positives = ((pred_mask & ~gt_mask) | ((distances >= dist_th) & pred_mask & gt_mask)).sum().item()
false_negatives = (~pred_mask & gt_mask).sum().item()
# Calculate precision, recall, and F1 score
accuracy = (true_positives + true_negatives) / geometry_mask.sum().item()
precision = true_positives / (true_positives + false_positives + 1e-10)
recall = true_positives / (true_positives + false_negatives + 1e-10)
f1 = 2 * (precision * recall) / (precision + recall + 1e-10)
return accuracy, precision, recall, f1
def calculate_metrics_l(gt, pred, conf_th=0.1, dist_th=5):
pred_pos = pred[:, :, :, :-1]
gt_pos = gt[:, :, :, :-1]
pred_mask = torch.all((pred[:, :, :, -1] > conf_th), dim=-1)
gt_mask = torch.all((gt[:, :, :, -1] > conf_th), dim=-1)
gt_flip = torch.flip(gt_pos, dims=[2])
distances1 = torch.norm(pred_pos - gt_pos, dim=-1)
distances2 = torch.norm(pred_pos - gt_flip, dim=-1)
distances1_bool = torch.all((distances1 < dist_th), dim=-1)
distances2_bool = torch.all((distances2 < dist_th), dim=-1)
# Count true positives, false positives, and false negatives based on distance threshold
true_positives = ((distances1_bool | distances2_bool) & pred_mask & gt_mask).sum().item()
true_negatives = (~pred_mask & ~gt_mask).sum().item()
false_positives = (
(pred_mask & ~gt_mask) | ((~distances1_bool & ~distances2_bool) & pred_mask & gt_mask)).sum().item()
false_negatives = (~pred_mask & gt_mask).sum().item()
# Calculate precision, recall, and F1 score
accuracy = (true_positives + true_negatives) / (gt.size()[1] * gt.size()[0])
precision = true_positives / (true_positives + false_positives + 1e-10)
recall = true_positives / (true_positives + false_negatives + 1e-10)
f1 = 2 * (precision * recall) / (precision + recall + 1e-10)
return accuracy, precision, recall, f1
def calculate_metrics_l_with_mask(gt, pred, mask, conf_th=0.1, dist_th=5):
#only works with batch 1. Should be adapted to batch > 1 in an organic way or just do a loop over batch
geometry_mask = (mask[:, :-1] > 0).cpu()
pred = pred[geometry_mask]
gt = gt[geometry_mask]
pred_pos = pred[:, :, :-1]
gt_pos = gt[:, :, :-1]
pred_mask = torch.all((pred[:, :, -1] > conf_th), dim=-1)
gt_mask = torch.all((gt[:, :, -1] > conf_th), dim=-1)
gt_flip = torch.flip(gt_pos, dims=[1])
distances1 = torch.norm(pred_pos - gt_pos, dim=-1)
distances2 = torch.norm(pred_pos - gt_flip, dim=-1)
distances1_bool = torch.all((distances1 < dist_th), dim=-1)
distances2_bool = torch.all((distances2 < dist_th), dim=-1)
# Count true positives, false positives, and false negatives based on distance threshold
true_positives = ((distances1_bool | distances2_bool) & pred_mask & gt_mask).sum().item()
true_negatives = (~pred_mask & ~gt_mask).sum().item()
false_positives = (
(pred_mask & ~gt_mask) | ((~distances1_bool & ~distances2_bool) & pred_mask & gt_mask)).sum().item()
false_negatives = (~pred_mask & gt_mask).sum().item()
# Calculate precision, recall, and F1 score
accuracy = (true_positives + true_negatives) / geometry_mask.sum().item()
precision = true_positives / (true_positives + false_positives + 1e-10)
recall = true_positives / (true_positives + false_negatives + 1e-10)
f1 = 2 * (precision * recall) / (precision + recall + 1e-10)
return accuracy, precision, recall, f1
def calc_iou_whole_with_poly(pred_h, gt_h, frame_w=1280, frame_h=720, template_w=115, template_h=74):
corners = np.array([[0, 0],
[frame_w - 1, 0],
[frame_w - 1, frame_h - 1],
[0, frame_h - 1]], dtype=np.float64)
mapping_mat = np.linalg.inv(gt_h)
mapping_mat /= mapping_mat[2, 2]
gt_corners = cv2.perspectiveTransform(
corners[:, None, :], gt_h) # inv_gt_mat * (gt_mat * [x, y, 1])
gt_corners = cv2.perspectiveTransform(
gt_corners, np.linalg.inv(gt_h))
gt_corners = gt_corners[:, 0, :]
pred_corners = cv2.perspectiveTransform(
corners[:, None, :], gt_h) # inv_pred_mat * (gt_mat * [x, y, 1])
pred_corners = cv2.perspectiveTransform(
pred_corners, np.linalg.inv(pred_h))
pred_corners = pred_corners[:, 0, :]
gt_poly = Polygon(gt_corners.tolist())
pred_poly = Polygon(pred_corners.tolist())
# f, axarr = plt.subplots(1, 2, figsize=(16, 12))
# axarr[0].plot(*gt_poly.exterior.coords.xy)
# axarr[1].plot(*pred_poly.exterior.coords.xy)
# plt.show()
if pred_poly.is_valid is False:
return 0., None, None
if not gt_poly.intersects(pred_poly):
print('not intersects')
iou = 0.
else:
intersection = gt_poly.intersection(pred_poly).area
union = gt_poly.area + pred_poly.area - intersection
if union <= 0.:
print('whole union', union)
iou = 0.
else:
iou = intersection / union
return iou, None, None
def calc_iou_part(pred_h, gt_h, frame_w=1280, frame_h=720, template_w=115, template_h=74):
# field template binary mask
field_mask = np.ones((frame_h, frame_w, 3), dtype=np.uint8) * 255
gt_mask = cv2.warpPerspective(field_mask, gt_h, (template_w, template_h),
cv2.INTER_AREA, borderMode=cv2.BORDER_CONSTANT, borderValue=(0))
pred_mask = cv2.warpPerspective(field_mask, pred_h, (template_w, template_h),
cv2.INTER_AREA, borderMode=cv2.BORDER_CONSTANT, borderValue=(0))
gt_mask[gt_mask > 0] = 255
pred_mask[pred_mask > 0] = 255
intersection = ((gt_mask > 0) * (pred_mask > 0)).sum()
union = (gt_mask > 0).sum() + (pred_mask > 0).sum() - intersection
if union <= 0:
print('part union', union)
# iou = float('nan')
iou = 0.
else:
iou = float(intersection) / float(union)
# === blending ===
gt_white_area = (gt_mask[:, :, 0] == 255) & (
gt_mask[:, :, 1] == 255) & (gt_mask[:, :, 2] == 255)
gt_fill = gt_mask.copy()
gt_fill[gt_white_area, 0] = 255
gt_fill[gt_white_area, 1] = 0
gt_fill[gt_white_area, 2] = 0
pred_white_area = (pred_mask[:, :, 0] == 255) & (
pred_mask[:, :, 1] == 255) & (pred_mask[:, :, 2] == 255)
pred_fill = pred_mask.copy()
pred_fill[pred_white_area, 0] = 0
pred_fill[pred_white_area, 1] = 255
pred_fill[pred_white_area, 2] = 0
gt_maskf = gt_fill.astype(float) / 255
pred_maskf = pred_fill.astype(float) / 255
fill_resultf = cv2.addWeighted(gt_maskf, 0.5,
pred_maskf, 0.5, 0.0)
fill_result = np.uint8(fill_resultf * 255)
return iou
def calc_proj_error(pred_h, gt_h, frame_w=1280, frame_h=720, template_w=115, template_h=74):
field_mask = np.ones((template_h, template_w, 3), dtype=np.uint8) * 255
gt_mask = cv2.warpPerspective(field_mask, np.linalg.inv(
gt_h), (frame_w, frame_h), borderMode=cv2.BORDER_CONSTANT, borderValue=(0))
gt_gray = cv2.cvtColor(gt_mask, cv2.COLOR_BGR2GRAY)
contours, hierarchy = cv2.findContours(
gt_gray, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
contour = np.squeeze(contours[0])
poly = Polygon(contour)
sample_pts = []
num_pts = 2500
while len(sample_pts) <= num_pts:
x = random.sample(range(0, frame_w), 1)
y = random.sample(range(0, frame_h), 1)
p = Point(x[0], y[0])
if p.within(poly):
sample_pts.append([x[0], y[0]])
sample_pts = np.array(sample_pts, dtype=np.float32)
field_dim_x, field_dim_y = 100, 60
x_scale = field_dim_x / template_w
y_scale = field_dim_y / template_h
scaling_mat = np.eye(3)
scaling_mat[0, 0] = x_scale
scaling_mat[1, 1] = y_scale
gt_temp_grid = cv2.perspectiveTransform(
sample_pts.reshape(-1, 1, 2), scaling_mat @ gt_h)
gt_temp_grid = gt_temp_grid.reshape(-1, 2)
pred_temp_grid = cv2.perspectiveTransform(
sample_pts.reshape(-1, 1, 2), scaling_mat @ pred_h)
pred_temp_grid = pred_temp_grid.reshape(-1, 2)
# TODO compute distance in top view
gt_grid_list = []
pred_grid_list = []
for gt_pts, pred_pts in zip(gt_temp_grid, pred_temp_grid):
if 0 <= gt_pts[0] < field_dim_x and 0 <= gt_pts[1] < field_dim_y and \
0 <= pred_pts[0] < field_dim_x and 0 <= pred_pts[1] < field_dim_y:
gt_grid_list.append(gt_pts)
pred_grid_list.append(pred_pts)
gt_grid_list = np.array(gt_grid_list)
pred_grid_list = np.array(pred_grid_list)
if gt_grid_list.shape != pred_grid_list.shape:
print('proj error:', gt_grid_list.shape, pred_grid_list.shape)
assert gt_grid_list.shape == pred_grid_list.shape, 'shape mismatch'
if gt_grid_list.size != 0 and pred_grid_list.size != 0:
distance_list = calc_euclidean_distance(
gt_grid_list, pred_grid_list, axis=1)
return distance_list.mean() # average all keypoints
else:
print(gt_grid_list)
print(pred_grid_list)
return float('nan')
def calc_euclidean_distance(a, b, _norm=np.linalg.norm, axis=None):
return _norm(a - b, axis=axis)
def gen_template_grid():
# === set uniform grid ===
# field_dim_x, field_dim_y = 105.000552, 68.003928 # in meter
field_dim_x, field_dim_y = 114.83, 74.37 # in yard
# field_dim_x, field_dim_y = 115, 74 # in yard
nx, ny = (13, 7)
x = np.linspace(0, field_dim_x, nx)
y = np.linspace(0, field_dim_y, ny)
xv, yv = np.meshgrid(x, y, indexing='ij')
uniform_grid = np.stack((xv, yv), axis=2).reshape(-1, 2)
uniform_grid = np.concatenate((uniform_grid, np.ones(
(uniform_grid.shape[0], 1))), axis=1) # top2bottom, left2right
# TODO: class label in template, each keypoints is (x, y, c), c is label that starts from 1
for idx, pts in enumerate(uniform_grid):
pts[2] = idx + 1 # keypoints label
return uniform_grid
def calc_reproj_error(pred_h, gt_h, frame_w=1280, frame_h=720, template_w=115, template_h=74):
uniform_grid = gen_template_grid() # grid shape (91, 3), (x, y, label)
template_grid = uniform_grid[:, :2].copy()
template_grid = template_grid.reshape(-1, 1, 2)
gt_warp_grid = cv2.perspectiveTransform(template_grid, np.linalg.inv(gt_h))
gt_warp_grid = gt_warp_grid.reshape(-1, 2)
pred_warp_grid = cv2.perspectiveTransform(
template_grid, np.linalg.inv(pred_h))
pred_warp_grid = pred_warp_grid.reshape(-1, 2)
# TODO compute distance in camera view
gt_grid_list = []
pred_grid_list = []
for gt_pts, pred_pts in zip(gt_warp_grid, pred_warp_grid):
if 0 <= gt_pts[0] < frame_w and 0 <= gt_pts[1] < frame_h and \
0 <= pred_pts[0] < frame_w and 0 <= pred_pts[1] < frame_h:
gt_grid_list.append(gt_pts)
pred_grid_list.append(pred_pts)
gt_grid_list = np.array(gt_grid_list)
pred_grid_list = np.array(pred_grid_list)
if gt_grid_list.shape != pred_grid_list.shape:
print('reproj error:', gt_grid_list.shape, pred_grid_list.shape)
assert gt_grid_list.shape == pred_grid_list.shape, 'shape mismatch'
if gt_grid_list.size != 0 and pred_grid_list.size != 0:
distance_list = calc_euclidean_distance(
gt_grid_list, pred_grid_list, axis=1)
distance_list /= frame_h # normalize by image height
return distance_list.mean() # average all keypoints
else:
print(gt_grid_list)
print(pred_grid_list)
return float('nan')
|